关于二维持久模的区间可分解逼近

Hideto Asashiba , Emerson G. Escolar , Ken Nakashima , Michio Yoshiwaki
{"title":"关于二维持久模的区间可分解逼近","authors":"Hideto Asashiba ,&nbsp;Emerson G. Escolar ,&nbsp;Ken Nakashima ,&nbsp;Michio Yoshiwaki","doi":"10.1016/j.jaca.2023.100007","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a new invariant for 2D persistence modules called the compressed multiplicity and show that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a 2D persistence module <em>M</em>, we propose an “interval-decomposable replacement” <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> (in the split Grothendieck group of the category of persistence modules), which is expressed by a pair of interval-decomposable modules, that is, its positive and negative parts. We show that <em>M</em> is interval-decomposable if and only if <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is equal to <em>M</em> in the split Grothendieck group. Furthermore, even for modules <em>M</em> not necessarily interval-decomposable, <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> preserves the dimension vector and the rank invariant of <em>M</em>. In addition, we provide an algorithm to compute <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> (a high-level algorithm in the general case, and a detailed algorithm for the size <span><math><mn>2</mn><mo>×</mo><mi>n</mi></math></span> case).</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"6 ","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"On approximation of 2D persistence modules by interval-decomposables\",\"authors\":\"Hideto Asashiba ,&nbsp;Emerson G. Escolar ,&nbsp;Ken Nakashima ,&nbsp;Michio Yoshiwaki\",\"doi\":\"10.1016/j.jaca.2023.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we propose a new invariant for 2D persistence modules called the compressed multiplicity and show that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a 2D persistence module <em>M</em>, we propose an “interval-decomposable replacement” <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> (in the split Grothendieck group of the category of persistence modules), which is expressed by a pair of interval-decomposable modules, that is, its positive and negative parts. We show that <em>M</em> is interval-decomposable if and only if <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is equal to <em>M</em> in the split Grothendieck group. Furthermore, even for modules <em>M</em> not necessarily interval-decomposable, <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> preserves the dimension vector and the rank invariant of <em>M</em>. In addition, we provide an algorithm to compute <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> (a high-level algorithm in the general case, and a detailed algorithm for the size <span><math><mn>2</mn><mo>×</mo><mi>n</mi></math></span> case).</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"6 \",\"pages\":\"Article 100007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827723000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827723000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在这项工作中,我们为二维持久模提出了一个新的不变量,称为压缩多重性,并证明了它推广了维向量和秩不变量的概念。此外,对于2D持久模M,我们提出了一个“区间可分解替换”δ(M)(在持久模范畴的分裂Grothendieck群中),它由一对区间可分解模表示,即它的正部分和负部分。我们证明了M是区间可分解的,当且仅当δ(M)等于分裂Grothendieck群中的M。此外,即使对于不一定是区间可分解的模M,δ(M)也保持了M的维向量和秩不变量。此外,我们还提供了一种计算δ(M,在一般情况下是高级算法,在大小为2×n的情况下是详细算法)的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On approximation of 2D persistence modules by interval-decomposables

In this work, we propose a new invariant for 2D persistence modules called the compressed multiplicity and show that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a 2D persistence module M, we propose an “interval-decomposable replacement” δ(M) (in the split Grothendieck group of the category of persistence modules), which is expressed by a pair of interval-decomposable modules, that is, its positive and negative parts. We show that M is interval-decomposable if and only if δ(M) is equal to M in the split Grothendieck group. Furthermore, even for modules M not necessarily interval-decomposable, δ(M) preserves the dimension vector and the rank invariant of M. In addition, we provide an algorithm to compute δ(M) (a high-level algorithm in the general case, and a detailed algorithm for the size 2×n case).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信