第九个Dedekind数的计算

Christian Jäkel
{"title":"第九个Dedekind数的计算","authors":"Christian Jäkel","doi":"10.1016/j.jaca.2023.100006","DOIUrl":null,"url":null,"abstract":"<div><p>We present an algorithm to compute the 9th Dedekind number: 286386577668298411128469151667598498812366. The key aspects are the use of matrix multiplication and symmetries in the free distributive lattice, that are determined with techniques from Formal Concept Analysis.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"6 ","pages":"Article 100006"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A computation of the ninth Dedekind number\",\"authors\":\"Christian Jäkel\",\"doi\":\"10.1016/j.jaca.2023.100006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an algorithm to compute the 9th Dedekind number: 286386577668298411128469151667598498812366. The key aspects are the use of matrix multiplication and symmetries in the free distributive lattice, that are determined with techniques from Formal Concept Analysis.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"6 \",\"pages\":\"Article 100006\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827723000037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827723000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个计算第九个Dedekind数的算法:2863865776682984111284691516598498812366。关键方面是在自由分配格中使用矩阵乘法和对称性,这是用形式概念分析的技术确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computation of the ninth Dedekind number

We present an algorithm to compute the 9th Dedekind number: 286386577668298411128469151667598498812366. The key aspects are the use of matrix multiplication and symmetries in the free distributive lattice, that are determined with techniques from Formal Concept Analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信