基于深度学习和云计算的大数据网络发电智能预测方法

Zhaolong Zhou
{"title":"基于深度学习和云计算的大数据网络发电智能预测方法","authors":"Zhaolong Zhou","doi":"10.1016/j.ijin.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to elevate the precision and efficiency of prevailing photovoltaic prediction algorithms by integrating deep learning and cloud computing techniques. The emphasis lies in leveraging measured solar power generation data to simulate the model's predictive capabilities and determine optimal parameters. The study employs a hybrid approach, combining a multilayer perceptron-deep belief network (MLP-DBN) algorithm, and contrasts it with other methods like support vector machine (SVM), long short-term memory (LSTM), multilayer perception (MLP), and deep belief networks (DBN). Assessment of model performance encompasses root-mean-square deviation, mean absolute error and the decision coefficient metrics. Empirical results highlight the superiority of the MLP-DBN technique, showcasing reductions in root mean square error by 2.20%, 1.64%, 2.09%, and 4.83%, and mean absolute error by 0.67%, 0.11%, 1.12%, and 1.30%, respectively. The coefficient of determination (R2) exhibits notable increments of 2.96%, 2.05%, 2.77%, and 8.64%. These strides underscore substantial advancements in prediction accuracy and error mitigation. The findings underscore the efficacy of the proposed hybrid model in ameliorating existing photovoltaic forecast algorithms, effectively addressing their limitations, including inadequate accuracy and performance.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"4 ","pages":"Pages 224-230"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent prediction method for power generation based on deep learning and cloud computing in big data networks\",\"authors\":\"Zhaolong Zhou\",\"doi\":\"10.1016/j.ijin.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to elevate the precision and efficiency of prevailing photovoltaic prediction algorithms by integrating deep learning and cloud computing techniques. The emphasis lies in leveraging measured solar power generation data to simulate the model's predictive capabilities and determine optimal parameters. The study employs a hybrid approach, combining a multilayer perceptron-deep belief network (MLP-DBN) algorithm, and contrasts it with other methods like support vector machine (SVM), long short-term memory (LSTM), multilayer perception (MLP), and deep belief networks (DBN). Assessment of model performance encompasses root-mean-square deviation, mean absolute error and the decision coefficient metrics. Empirical results highlight the superiority of the MLP-DBN technique, showcasing reductions in root mean square error by 2.20%, 1.64%, 2.09%, and 4.83%, and mean absolute error by 0.67%, 0.11%, 1.12%, and 1.30%, respectively. The coefficient of determination (R2) exhibits notable increments of 2.96%, 2.05%, 2.77%, and 8.64%. These strides underscore substantial advancements in prediction accuracy and error mitigation. The findings underscore the efficacy of the proposed hybrid model in ameliorating existing photovoltaic forecast algorithms, effectively addressing their limitations, including inadequate accuracy and performance.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"4 \",\"pages\":\"Pages 224-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603023000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603023000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过集成深度学习和云计算技术,提高主流光伏预测算法的精度和效率。重点在于利用测量的太阳能发电数据来模拟模型的预测能力并确定最佳参数。该研究采用了一种混合方法,结合了多层感知器深度信念网络(MLP-DBN)算法,并将其与其他方法进行了比较,如支持向量机(SVM)、长短期记忆(LSTM)、多层感知(MLP)和深度信念网络(DBN)。模型性能评估包括均方根偏差、平均绝对误差和决策系数度量。经验结果突出了MLP-DBN技术的优越性,显示均方根误差分别降低了2.20%、1.64%、2.09%和4.83%,平均绝对误差分别降低0.67%、0.11%、1.12%和1.30%。决定系数(R2)表现出2.96%、2.05%、2.77%和8.64%的显著增量。这些进步突显了预测准确性和误差缓解方面的重大进步。研究结果强调了所提出的混合模型在改进现有光伏预测算法方面的有效性,有效地解决了其局限性,包括准确性和性能不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent prediction method for power generation based on deep learning and cloud computing in big data networks

This paper aims to elevate the precision and efficiency of prevailing photovoltaic prediction algorithms by integrating deep learning and cloud computing techniques. The emphasis lies in leveraging measured solar power generation data to simulate the model's predictive capabilities and determine optimal parameters. The study employs a hybrid approach, combining a multilayer perceptron-deep belief network (MLP-DBN) algorithm, and contrasts it with other methods like support vector machine (SVM), long short-term memory (LSTM), multilayer perception (MLP), and deep belief networks (DBN). Assessment of model performance encompasses root-mean-square deviation, mean absolute error and the decision coefficient metrics. Empirical results highlight the superiority of the MLP-DBN technique, showcasing reductions in root mean square error by 2.20%, 1.64%, 2.09%, and 4.83%, and mean absolute error by 0.67%, 0.11%, 1.12%, and 1.30%, respectively. The coefficient of determination (R2) exhibits notable increments of 2.96%, 2.05%, 2.77%, and 8.64%. These strides underscore substantial advancements in prediction accuracy and error mitigation. The findings underscore the efficacy of the proposed hybrid model in ameliorating existing photovoltaic forecast algorithms, effectively addressing their limitations, including inadequate accuracy and performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信