线性回归模型的快速聚类自举方法

IF 2 Q2 ECONOMICS
James G. MacKinnon
{"title":"线性回归模型的快速聚类自举方法","authors":"James G. MacKinnon","doi":"10.1016/j.ecosta.2021.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient computational algorithms for bootstrapping linear regression models with clustered data<span><span> are discussed. For ordinary least squares (OLS) regression, a new algorithm is provided for the pairs cluster bootstrap, along with two algorithms for the wild cluster bootstrap. One of these is a new way to express an existing method. For instrumental variables (IV) regression, an efficient algorithm is provided for the wild restricted efficient cluster (WREC) bootstrap. All computations are based on matrices and vectors that contain </span>sums of squares<span> and cross-products for the observations within each cluster, which have to be computed just once before the bootstrap loop begins. Monte Carlo experiments are used to study the finite-sample properties of bootstrap Wald tests for OLS regression and of WREC bootstrap tests for IV regression.</span></span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"26 ","pages":"Pages 52-71"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fast cluster bootstrap methods for linear regression models\",\"authors\":\"James G. MacKinnon\",\"doi\":\"10.1016/j.ecosta.2021.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient computational algorithms for bootstrapping linear regression models with clustered data<span><span> are discussed. For ordinary least squares (OLS) regression, a new algorithm is provided for the pairs cluster bootstrap, along with two algorithms for the wild cluster bootstrap. One of these is a new way to express an existing method. For instrumental variables (IV) regression, an efficient algorithm is provided for the wild restricted efficient cluster (WREC) bootstrap. All computations are based on matrices and vectors that contain </span>sums of squares<span> and cross-products for the observations within each cluster, which have to be computed just once before the bootstrap loop begins. Monte Carlo experiments are used to study the finite-sample properties of bootstrap Wald tests for OLS regression and of WREC bootstrap tests for IV regression.</span></span></p></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"26 \",\"pages\":\"Pages 52-71\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452306221001404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 9

摘要

讨论了具有聚类数据的自举线性回归模型的有效计算算法。对于普通最小二乘(OLS)回归,提供了一种新的成对聚类自举算法,以及两种用于野生聚类自举的算法。其中之一是一种表达现有方法的新方法。对于工具变量(IV)回归,为野生限制有效聚类(WREC)引导提供了一种有效的算法。所有计算都基于矩阵和向量,这些矩阵和向量包含每个集群内观测值的平方和和叉积,必须在引导循环开始前计算一次。蒙特卡罗实验用于研究OLS回归的bootstrap Wald检验和IV回归的WREC bootstrap检验的有限样本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast cluster bootstrap methods for linear regression models

Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For ordinary least squares (OLS) regression, a new algorithm is provided for the pairs cluster bootstrap, along with two algorithms for the wild cluster bootstrap. One of these is a new way to express an existing method. For instrumental variables (IV) regression, an efficient algorithm is provided for the wild restricted efficient cluster (WREC) bootstrap. All computations are based on matrices and vectors that contain sums of squares and cross-products for the observations within each cluster, which have to be computed just once before the bootstrap loop begins. Monte Carlo experiments are used to study the finite-sample properties of bootstrap Wald tests for OLS regression and of WREC bootstrap tests for IV regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信