用于关键基础设施保护的取证和法规遵从性审核框架

IF 4.1 3区 工程技术 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
João Henriques , Filipe Caldeira , Tiago Cruz , Paulo Simões
{"title":"用于关键基础设施保护的取证和法规遵从性审核框架","authors":"João Henriques ,&nbsp;Filipe Caldeira ,&nbsp;Tiago Cruz ,&nbsp;Paulo Simões","doi":"10.1016/j.ijcip.2023.100613","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary societies are increasingly dependent on products and services provided by Critical Infrastructure (CI) such as power plants, energy distribution networks, transportation systems and manufacturing facilities. Due to their nature, size and complexity, such CIs are often supported by Industrial Automation and Control Systems (IACS), which are in charge of managing assets and controlling everyday operations.</p><p>As these IACS become larger and more complex, encompassing a growing number of processes and interconnected monitoring and actuating devices, the attack surface of the underlying CIs increases. This situation calls for new strategies to improve Critical Infrastructure Protection (CIP) frameworks, based on evolved approaches for data analytics, able to gather insights from the CI.</p><p>In this paper, we propose an Intrusion and Anomaly Detection System (IADS) framework that adopts forensics and compliance auditing capabilities at its core to improve CIP. Adopted forensics techniques help to address, for instance, post-incident analysis and investigation, while the support of continuous auditing processes simplifies compliance management and service quality assessment.</p><p>More specifically, after discussing the rationale for such a framework, this paper presents a formal description of the proposed components and functions and discusses how the framework can be implemented using a cloud-native approach, to address both functional and non-functional requirements. An experimental analysis of the framework scalability is also provided.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"42 ","pages":"Article 100613"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A forensics and compliance auditing framework for critical infrastructure protection\",\"authors\":\"João Henriques ,&nbsp;Filipe Caldeira ,&nbsp;Tiago Cruz ,&nbsp;Paulo Simões\",\"doi\":\"10.1016/j.ijcip.2023.100613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contemporary societies are increasingly dependent on products and services provided by Critical Infrastructure (CI) such as power plants, energy distribution networks, transportation systems and manufacturing facilities. Due to their nature, size and complexity, such CIs are often supported by Industrial Automation and Control Systems (IACS), which are in charge of managing assets and controlling everyday operations.</p><p>As these IACS become larger and more complex, encompassing a growing number of processes and interconnected monitoring and actuating devices, the attack surface of the underlying CIs increases. This situation calls for new strategies to improve Critical Infrastructure Protection (CIP) frameworks, based on evolved approaches for data analytics, able to gather insights from the CI.</p><p>In this paper, we propose an Intrusion and Anomaly Detection System (IADS) framework that adopts forensics and compliance auditing capabilities at its core to improve CIP. Adopted forensics techniques help to address, for instance, post-incident analysis and investigation, while the support of continuous auditing processes simplifies compliance management and service quality assessment.</p><p>More specifically, after discussing the rationale for such a framework, this paper presents a formal description of the proposed components and functions and discusses how the framework can be implemented using a cloud-native approach, to address both functional and non-functional requirements. An experimental analysis of the framework scalability is also provided.</p></div>\",\"PeriodicalId\":49057,\"journal\":{\"name\":\"International Journal of Critical Infrastructure Protection\",\"volume\":\"42 \",\"pages\":\"Article 100613\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Critical Infrastructure Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874548223000264\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548223000264","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

当代社会越来越依赖关键基础设施(CI)提供的产品和服务,如发电厂、能源分配网络、运输系统和制造设施。由于其性质、规模和复杂性,此类CI通常由负责管理资产和控制日常运营的工业自动化和控制系统(IACS)支持。随着这些IACS变得更大、更复杂,包括越来越多的流程和互连的监控和执行设备,底层CI的攻击面也会增加。这种情况需要新的策略来改进关键基础设施保护(CIP)框架,该框架基于数据分析的进化方法,能够从CI中收集见解。在本文中,我们提出了一个入侵和异常检测系统(IADS)框架,其核心采用取证和合规审计功能来改进CIP。采用的取证技术有助于解决事件后的分析和调查问题,而对持续审计流程的支持简化了合规管理和服务质量评估。更具体地说,在讨论了这种框架的基本原理后,本文对所提出的组件和功能进行了正式描述,并讨论了如何使用云原生方法来实现该框架,以满足功能和非功能需求。还对框架的可伸缩性进行了实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A forensics and compliance auditing framework for critical infrastructure protection

A forensics and compliance auditing framework for critical infrastructure protection

Contemporary societies are increasingly dependent on products and services provided by Critical Infrastructure (CI) such as power plants, energy distribution networks, transportation systems and manufacturing facilities. Due to their nature, size and complexity, such CIs are often supported by Industrial Automation and Control Systems (IACS), which are in charge of managing assets and controlling everyday operations.

As these IACS become larger and more complex, encompassing a growing number of processes and interconnected monitoring and actuating devices, the attack surface of the underlying CIs increases. This situation calls for new strategies to improve Critical Infrastructure Protection (CIP) frameworks, based on evolved approaches for data analytics, able to gather insights from the CI.

In this paper, we propose an Intrusion and Anomaly Detection System (IADS) framework that adopts forensics and compliance auditing capabilities at its core to improve CIP. Adopted forensics techniques help to address, for instance, post-incident analysis and investigation, while the support of continuous auditing processes simplifies compliance management and service quality assessment.

More specifically, after discussing the rationale for such a framework, this paper presents a formal description of the proposed components and functions and discusses how the framework can be implemented using a cloud-native approach, to address both functional and non-functional requirements. An experimental analysis of the framework scalability is also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Critical Infrastructure Protection
International Journal of Critical Infrastructure Protection COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, MULTIDISCIPLINARY
CiteScore
8.90
自引率
5.60%
发文量
46
审稿时长
>12 weeks
期刊介绍: The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing. The scope of the journal includes, but is not limited to: 1. Analysis of security challenges that are unique or common to the various infrastructure sectors. 2. Identification of core security principles and techniques that can be applied to critical infrastructure protection. 3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures. 4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信