{"title":"线段的离散和混合双中心问题","authors":"Sukanya Maji, Sanjib Sadhu","doi":"10.1016/j.ipl.2023.106451","DOIUrl":null,"url":null,"abstract":"<div><p>Given a set of <em>n</em> non-intersecting line segments <span><math><mi>L</mi></math></span> and a set <em>Q</em> of <em>m</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>; we present algorithms of the discrete two-center problem for (i) covering, (ii) stabbing and (iii) hitting the set <span><math><mi>L</mi></math></span> in (i) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span>, (ii) <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and (iii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> time respectively, where the two disks are centered at two points of <em>Q</em> and radius of the larger disk is minimized. We also study the mixed two-center problems for (i) covering, (ii) stabbing and (iii) hitting the set <span><math><mi>L</mi></math></span>, where only one of the disks is centered at a point <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>Q</mi></math></span> and the other disk is centered at any point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and these three problems are solved in (i) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>, (ii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and (iii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> time, respectively. The space complexities for all these algorithms are linear.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"184 ","pages":"Article 106451"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete and mixed two-center problems for line segments\",\"authors\":\"Sukanya Maji, Sanjib Sadhu\",\"doi\":\"10.1016/j.ipl.2023.106451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a set of <em>n</em> non-intersecting line segments <span><math><mi>L</mi></math></span> and a set <em>Q</em> of <em>m</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>; we present algorithms of the discrete two-center problem for (i) covering, (ii) stabbing and (iii) hitting the set <span><math><mi>L</mi></math></span> in (i) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span>, (ii) <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and (iii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> time respectively, where the two disks are centered at two points of <em>Q</em> and radius of the larger disk is minimized. We also study the mixed two-center problems for (i) covering, (ii) stabbing and (iii) hitting the set <span><math><mi>L</mi></math></span>, where only one of the disks is centered at a point <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>Q</mi></math></span> and the other disk is centered at any point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and these three problems are solved in (i) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>, (ii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and (iii) <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> time, respectively. The space complexities for all these algorithms are linear.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"184 \",\"pages\":\"Article 106451\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019023000947\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000947","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Discrete and mixed two-center problems for line segments
Given a set of n non-intersecting line segments and a set Q of m points in ; we present algorithms of the discrete two-center problem for (i) covering, (ii) stabbing and (iii) hitting the set in (i) , (ii) and (iii) time respectively, where the two disks are centered at two points of Q and radius of the larger disk is minimized. We also study the mixed two-center problems for (i) covering, (ii) stabbing and (iii) hitting the set , where only one of the disks is centered at a point and the other disk is centered at any point in , and these three problems are solved in (i) , (ii) and (iii) time, respectively. The space complexities for all these algorithms are linear.
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.