社会公平聚类的紧FPT近似

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dishant Goyal, Ragesh Jaiswal
{"title":"社会公平聚类的紧FPT近似","authors":"Dishant Goyal,&nbsp;Ragesh Jaiswal","doi":"10.1016/j.ipl.2023.106383","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study the <em>socially fair k-median/k-means problem</em>. We are given a set of points <em>P</em> in a metric space <span><math><mi>X</mi></math></span> with a distance function <span><math><mi>d</mi><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span>. There are <em>ℓ</em> groups: <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>⊆</mo><mi>P</mi></math></span>. We are also given a set <em>F</em> of feasible centers in <span><math><mi>X</mi></math></span>. The goal in the socially fair <em>k</em>-median problem is to find a set <span><math><mi>C</mi><mo>⊆</mo><mi>F</mi></math></span> of <em>k</em> centers that minimizes the maximum average cost over all the groups. That is, find <em>C</em> that minimizes the objective function <span><math><mi>Φ</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>P</mi><mo>)</mo><mo>≡</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>⁡</mo><mo>{</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mi>d</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>/</mo><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><mo>}</mo></math></span>, where <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> is the distance of <em>x</em> to the closest center in <em>C</em>. The socially fair <em>k</em>-means problem is defined similarly by using squared distances, i.e., <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span> instead of <span><math><mi>d</mi><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span><span>. The current best approximation guarantee for both of the problems is </span><span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>ℓ</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>ℓ</mi></mrow></mfrac><mo>)</mo></mrow></math></span> due to Makarychev and Vakilian (COLT 2021). In this work, we study the fixed-parameter tractability of the problems with respect to parameter <em>k</em>. We design <span><math><mo>(</mo><mn>3</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>9</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span><span> approximation algorithms for the socially fair </span><em>k</em>-median and <em>k</em>-means problems, respectively, in FPT (fixed-parameter tractable) time <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>k</mi><mo>/</mo><mi>ε</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>n</mi><mo>=</mo><mo>|</mo><mi>P</mi><mo>∪</mo><mi>F</mi><mo>|</mo></math></span>. The algorithms are randomized and succeed with a probability of at least <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>. Furthermore, we show that if <span><math><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo><mo>≠</mo><mrow><mi>FPT</mi></mrow></math></span>, then better approximation guarantees are not possible in FPT time.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"182 ","pages":"Article 106383"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight FPT Approximation for Socially Fair Clustering\",\"authors\":\"Dishant Goyal,&nbsp;Ragesh Jaiswal\",\"doi\":\"10.1016/j.ipl.2023.106383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study the <em>socially fair k-median/k-means problem</em>. We are given a set of points <em>P</em> in a metric space <span><math><mi>X</mi></math></span> with a distance function <span><math><mi>d</mi><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span>. There are <em>ℓ</em> groups: <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>⊆</mo><mi>P</mi></math></span>. We are also given a set <em>F</em> of feasible centers in <span><math><mi>X</mi></math></span>. The goal in the socially fair <em>k</em>-median problem is to find a set <span><math><mi>C</mi><mo>⊆</mo><mi>F</mi></math></span> of <em>k</em> centers that minimizes the maximum average cost over all the groups. That is, find <em>C</em> that minimizes the objective function <span><math><mi>Φ</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>P</mi><mo>)</mo><mo>≡</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>⁡</mo><mo>{</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mi>d</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>/</mo><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><mo>}</mo></math></span>, where <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> is the distance of <em>x</em> to the closest center in <em>C</em>. The socially fair <em>k</em>-means problem is defined similarly by using squared distances, i.e., <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span> instead of <span><math><mi>d</mi><mo>(</mo><mo>.</mo><mo>,</mo><mo>.</mo><mo>)</mo></math></span><span>. The current best approximation guarantee for both of the problems is </span><span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>ℓ</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>ℓ</mi></mrow></mfrac><mo>)</mo></mrow></math></span> due to Makarychev and Vakilian (COLT 2021). In this work, we study the fixed-parameter tractability of the problems with respect to parameter <em>k</em>. We design <span><math><mo>(</mo><mn>3</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>9</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span><span> approximation algorithms for the socially fair </span><em>k</em>-median and <em>k</em>-means problems, respectively, in FPT (fixed-parameter tractable) time <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>k</mi><mo>/</mo><mi>ε</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> and <span><math><mi>n</mi><mo>=</mo><mo>|</mo><mi>P</mi><mo>∪</mo><mi>F</mi><mo>|</mo></math></span>. The algorithms are randomized and succeed with a probability of at least <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>. Furthermore, we show that if <span><math><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo><mo>≠</mo><mrow><mi>FPT</mi></mrow></math></span>, then better approximation guarantees are not possible in FPT time.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"182 \",\"pages\":\"Article 106383\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019023000261\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000261","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了社会公平的k-中值/k-均值问题。给出了度量空间X中的一组点P,其距离函数为d(.,.)ℓ 组:P1、…、Pℓ⊆P。我们还给出了X中可行中心的集合F。社会公平k-中值问题的目标是找到k个中心的集合C⊆F,该集合最小化所有组的最大平均成本。也就是说,找到最小化目标函数Φ(C,P)lect maxj的C⁡{∑x∈Pjd(C,x)/|Pj|},其中d(C,x)是x到C中最近中心的距离。社会公平k均值问题通过使用平方距离进行类似的定义,即d2(.,.)而不是d(.,..)。这两个问题的当前最佳逼近保证是O(log⁡ℓ日志⁡日志⁡ℓ) 由于Makarychev和Vakilian(COLT 2021)。在这项工作中,我们研究了关于参数k的问题的固定参数可处理性。我们分别为社会公平的k-中值和k-均值问题设计了(3+ε)和(9+ε。算法是随机的,并且成功的概率至少为(1−1n)。此外,我们证明了如果W[2]≠FPT,那么在FPT时间内不可能有更好的近似保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight FPT Approximation for Socially Fair Clustering

In this work, we study the socially fair k-median/k-means problem. We are given a set of points P in a metric space X with a distance function d(.,.). There are groups: P1,,PP. We are also given a set F of feasible centers in X. The goal in the socially fair k-median problem is to find a set CF of k centers that minimizes the maximum average cost over all the groups. That is, find C that minimizes the objective function Φ(C,P)maxj{xPjd(C,x)/|Pj|}, where d(C,x) is the distance of x to the closest center in C. The socially fair k-means problem is defined similarly by using squared distances, i.e., d2(.,.) instead of d(.,.). The current best approximation guarantee for both of the problems is O(logloglog) due to Makarychev and Vakilian (COLT 2021). In this work, we study the fixed-parameter tractability of the problems with respect to parameter k. We design (3+ε) and (9+ε) approximation algorithms for the socially fair k-median and k-means problems, respectively, in FPT (fixed-parameter tractable) time f(k,ε)nO(1), where f(k,ε)=(k/ε)O(k) and n=|PF|. The algorithms are randomized and succeed with a probability of at least (11n). Furthermore, we show that if W[2]FPT, then better approximation guarantees are not possible in FPT time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信