{"title":"折叠划分交换立方体的连通性、超连通性和广义3-连通性","authors":"Shu-Li Zhao , Jou-Ming Chang","doi":"10.1016/j.ipl.2023.106377","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em><span> be a connected graph and </span><span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn></math></span>. A tree <em>T</em> in <em>G</em> is called an <em>S</em>-tree if <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>. Two <em>S</em>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are internally disjoint if <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>S</mi></math></span>. For an integer <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, the <em>generalized r-connectivity</em> of a graph <em>G</em>, denoted by <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mrow><mi>min</mi></mrow><mo>{</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mspace></mspace><mo>|</mo><mspace></mspace><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>r</mi><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> denotes the maximum number of pairwise internally disjoint <em>S</em>-trees in <em>G</em>. The folded divide-and-swap cube, denoted by <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>, is a variant of the hypercube. </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> has better network cost measured by the product of degree and diameter than the hypercube and folded hypercube. Connectivity and super connectivity are two important parameters to evaluate the reliability of an interconnection network. In addition, as a generalization of traditional connectivity, generalized connectivity can more accurately assess the reliability of an interconnection network. In this paper, we first acquire the (edge) connectivity and super (edge) connectivity of </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and then obtain the generalized 3-connectivity of <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"182 ","pages":"Article 106377"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes\",\"authors\":\"Shu-Li Zhao , Jou-Ming Chang\",\"doi\":\"10.1016/j.ipl.2023.106377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em><span> be a connected graph and </span><span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn></math></span>. A tree <em>T</em> in <em>G</em> is called an <em>S</em>-tree if <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>. Two <em>S</em>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are internally disjoint if <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>S</mi></math></span>. For an integer <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, the <em>generalized r-connectivity</em> of a graph <em>G</em>, denoted by <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mrow><mi>min</mi></mrow><mo>{</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mspace></mspace><mo>|</mo><mspace></mspace><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>r</mi><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> denotes the maximum number of pairwise internally disjoint <em>S</em>-trees in <em>G</em>. The folded divide-and-swap cube, denoted by <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>, is a variant of the hypercube. </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> has better network cost measured by the product of degree and diameter than the hypercube and folded hypercube. Connectivity and super connectivity are two important parameters to evaluate the reliability of an interconnection network. In addition, as a generalization of traditional connectivity, generalized connectivity can more accurately assess the reliability of an interconnection network. In this paper, we first acquire the (edge) connectivity and super (edge) connectivity of </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and then obtain the generalized 3-connectivity of <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"182 \",\"pages\":\"Article 106377\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019023000200\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000200","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes
Let G be a connected graph and with . A tree T in G is called an S-tree if . Two S-trees and are internally disjoint if and . For an integer , the generalized r-connectivity of a graph G, denoted by , is defined as and , where denotes the maximum number of pairwise internally disjoint S-trees in G. The folded divide-and-swap cube, denoted by , is a variant of the hypercube. has better network cost measured by the product of degree and diameter than the hypercube and folded hypercube. Connectivity and super connectivity are two important parameters to evaluate the reliability of an interconnection network. In addition, as a generalization of traditional connectivity, generalized connectivity can more accurately assess the reliability of an interconnection network. In this paper, we first acquire the (edge) connectivity and super (edge) connectivity of and then obtain the generalized 3-connectivity of .
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.