折叠划分交换立方体的连通性、超连通性和广义3-连通性

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shu-Li Zhao , Jou-Ming Chang
{"title":"折叠划分交换立方体的连通性、超连通性和广义3-连通性","authors":"Shu-Li Zhao ,&nbsp;Jou-Ming Chang","doi":"10.1016/j.ipl.2023.106377","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em><span> be a connected graph and </span><span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn></math></span>. A tree <em>T</em> in <em>G</em> is called an <em>S</em>-tree if <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>. Two <em>S</em>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are internally disjoint if <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>S</mi></math></span>. For an integer <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, the <em>generalized r-connectivity</em> of a graph <em>G</em>, denoted by <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mrow><mi>min</mi></mrow><mo>{</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mspace></mspace><mo>|</mo><mspace></mspace><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>r</mi><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> denotes the maximum number of pairwise internally disjoint <em>S</em>-trees in <em>G</em>. The folded divide-and-swap cube, denoted by <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>, is a variant of the hypercube. </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> has better network cost measured by the product of degree and diameter than the hypercube and folded hypercube. Connectivity and super connectivity are two important parameters to evaluate the reliability of an interconnection network. In addition, as a generalization of traditional connectivity, generalized connectivity can more accurately assess the reliability of an interconnection network. In this paper, we first acquire the (edge) connectivity and super (edge) connectivity of </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and then obtain the generalized 3-connectivity of <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"182 ","pages":"Article 106377"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes\",\"authors\":\"Shu-Li Zhao ,&nbsp;Jou-Ming Chang\",\"doi\":\"10.1016/j.ipl.2023.106377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em><span> be a connected graph and </span><span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn></math></span>. A tree <em>T</em> in <em>G</em> is called an <em>S</em>-tree if <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>. Two <em>S</em>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are internally disjoint if <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>E</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>S</mi></math></span>. For an integer <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, the <em>generalized r-connectivity</em> of a graph <em>G</em>, denoted by <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mrow><mi>min</mi></mrow><mo>{</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mspace></mspace><mo>|</mo><mspace></mspace><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>r</mi><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> denotes the maximum number of pairwise internally disjoint <em>S</em>-trees in <em>G</em>. The folded divide-and-swap cube, denoted by <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>, is a variant of the hypercube. </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> has better network cost measured by the product of degree and diameter than the hypercube and folded hypercube. Connectivity and super connectivity are two important parameters to evaluate the reliability of an interconnection network. In addition, as a generalization of traditional connectivity, generalized connectivity can more accurately assess the reliability of an interconnection network. In this paper, we first acquire the (edge) connectivity and super (edge) connectivity of </span><span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and then obtain the generalized 3-connectivity of <span><math><mi>F</mi><mi>D</mi><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"182 \",\"pages\":\"Article 106377\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019023000200\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000200","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

设G是连通图,S⊆V(G)的|S|≥2。G中的树T称为S-树,如果S⊆V(T)。如果E(T1)≠E(T2)=∅和V(T1)≈V(T2)=S,则两个S-树T1和T2是内部不相交的。对于整数r≥2,图G的广义r-连通性,由κr(G)表示,定义为κr(G)=min{κG(S)|S⊆V(G)和|S|=r},其中κG(S)表示G中成对内部不相交的S-树的最大数目。折叠除交换立方体,由FDSCn表示,是超立方体的变体。与超立方体和折叠超立方体相比,FDSCn具有更好的网络代价(以度和直径的乘积来衡量)。连通性和超连通性是评价互联网络可靠性的两个重要参数。此外,作为传统连通性的推广,广义连通性可以更准确地评估互联网络的可靠性。在本文中,我们首先获得了FDSCn的(边)连通性和超(边)连接性,然后获得了FDSC n的广义3-连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes

Let G be a connected graph and SV(G) with |S|2. A tree T in G is called an S-tree if SV(T). Two S-trees T1 and T2 are internally disjoint if E(T1)E(T2)= and V(T1)V(T2)=S. For an integer r2, the generalized r-connectivity of a graph G, denoted by κr(G), is defined as κr(G)=min{κG(S)|SV(G) and |S|=r}, where κG(S) denotes the maximum number of pairwise internally disjoint S-trees in G. The folded divide-and-swap cube, denoted by FDSCn, is a variant of the hypercube. FDSCn has better network cost measured by the product of degree and diameter than the hypercube and folded hypercube. Connectivity and super connectivity are two important parameters to evaluate the reliability of an interconnection network. In addition, as a generalization of traditional connectivity, generalized connectivity can more accurately assess the reliability of an interconnection network. In this paper, we first acquire the (edge) connectivity and super (edge) connectivity of FDSCn and then obtain the generalized 3-connectivity of FDSCn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信