{"title":"流体中活性表面自组织形状动力学的计算模型","authors":"Lucas D. Wittwer , Sebastian Aland","doi":"10.1016/j.jcpx.2023.100126","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanochemical processes on surfaces such as the cellular cortex or epithelial sheets, play a key role in determining patterns and shape changes of biological systems. To understand the complex interplay of hydrodynamics and material flows on such active surfaces requires novel numerical tools. Here, we present a finite-element method for an active deformable surface interacting with the surrounding fluids. The underlying model couples surface and bulk hydrodynamics to surface flow of a diffusible species which generates active contractile forces. The method is validated with previous results based on linear stability analysis and shows almost perfect agreement regarding predicted patterning. Away from the linear regime we find rich non-linear behavior, such as the presence of multiple stationary states. We study the formation of a contractile ring on the surface and the corresponding shape changes. Finally, we explore mechanochemical pattern formation on various surface geometries and find that patterning strongly adapts to local surface curvature. The developed method provides a basis to analyze a variety of systems that involve mechanochemical pattern formation on active surfaces interacting with surrounding fluids.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"17 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A computational model of self-organized shape dynamics of active surfaces in fluids\",\"authors\":\"Lucas D. Wittwer , Sebastian Aland\",\"doi\":\"10.1016/j.jcpx.2023.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanochemical processes on surfaces such as the cellular cortex or epithelial sheets, play a key role in determining patterns and shape changes of biological systems. To understand the complex interplay of hydrodynamics and material flows on such active surfaces requires novel numerical tools. Here, we present a finite-element method for an active deformable surface interacting with the surrounding fluids. The underlying model couples surface and bulk hydrodynamics to surface flow of a diffusible species which generates active contractile forces. The method is validated with previous results based on linear stability analysis and shows almost perfect agreement regarding predicted patterning. Away from the linear regime we find rich non-linear behavior, such as the presence of multiple stationary states. We study the formation of a contractile ring on the surface and the corresponding shape changes. Finally, we explore mechanochemical pattern formation on various surface geometries and find that patterning strongly adapts to local surface curvature. The developed method provides a basis to analyze a variety of systems that involve mechanochemical pattern formation on active surfaces interacting with surrounding fluids.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"17 \",\"pages\":\"Article 100126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055223000045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055223000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computational model of self-organized shape dynamics of active surfaces in fluids
Mechanochemical processes on surfaces such as the cellular cortex or epithelial sheets, play a key role in determining patterns and shape changes of biological systems. To understand the complex interplay of hydrodynamics and material flows on such active surfaces requires novel numerical tools. Here, we present a finite-element method for an active deformable surface interacting with the surrounding fluids. The underlying model couples surface and bulk hydrodynamics to surface flow of a diffusible species which generates active contractile forces. The method is validated with previous results based on linear stability analysis and shows almost perfect agreement regarding predicted patterning. Away from the linear regime we find rich non-linear behavior, such as the presence of multiple stationary states. We study the formation of a contractile ring on the surface and the corresponding shape changes. Finally, we explore mechanochemical pattern formation on various surface geometries and find that patterning strongly adapts to local surface curvature. The developed method provides a basis to analyze a variety of systems that involve mechanochemical pattern formation on active surfaces interacting with surrounding fluids.