Leo van Iersel , Vincent Moulton , Yukihiro Murakami
{"title":"仙人掌的多项式不变量","authors":"Leo van Iersel , Vincent Moulton , Yukihiro Murakami","doi":"10.1016/j.ipl.2023.106394","DOIUrl":null,"url":null,"abstract":"<div><p>Graph invariants are a useful tool in graph theory. Not only do they encode useful information about the graphs to which they are associated, but complete invariants can be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs such as the well-known Tutte polynomial have been studied for several years, and recently there has been interest to also define such invariants for phylogenetic networks, a special type of graph that arises in the area of evolutionary biology. Recently Liu gave a complete invariant for (phylogenetic) trees. However, the polynomial invariants defined thus far for phylogenetic networks that are not trees require vertex labels and either contain a large number of variables, or they have exponentially many terms in the number of reticulations. This can make it difficult to compute these polynomials and to use them to analyse unlabelled networks. In this paper, we shall show how to circumvent some of these difficulties for rooted cactuses and cactuses. As well as being important in other areas such as operations research, rooted cactuses contain some common classes of phylogenetic networks such phylogenetic trees and level-1 networks. More specifically, we define a polynomial <em>F</em> that is a complete invariant for the class of rooted cactuses without vertices of indegree 1 and outdegree 1 that has 5 variables, and a polynomial <em>Q</em> that is a complete invariant for the class of rooted cactuses that has 6 variables whose degree can be bounded linearly in terms of the size of the rooted cactus. We also explain how to extend the <em>Q</em> polynomial to define a complete invariant for leaf-labelled rooted cactuses as well as (unrooted) cactuses.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"182 ","pages":"Article 106394"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial invariants for cactuses\",\"authors\":\"Leo van Iersel , Vincent Moulton , Yukihiro Murakami\",\"doi\":\"10.1016/j.ipl.2023.106394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph invariants are a useful tool in graph theory. Not only do they encode useful information about the graphs to which they are associated, but complete invariants can be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs such as the well-known Tutte polynomial have been studied for several years, and recently there has been interest to also define such invariants for phylogenetic networks, a special type of graph that arises in the area of evolutionary biology. Recently Liu gave a complete invariant for (phylogenetic) trees. However, the polynomial invariants defined thus far for phylogenetic networks that are not trees require vertex labels and either contain a large number of variables, or they have exponentially many terms in the number of reticulations. This can make it difficult to compute these polynomials and to use them to analyse unlabelled networks. In this paper, we shall show how to circumvent some of these difficulties for rooted cactuses and cactuses. As well as being important in other areas such as operations research, rooted cactuses contain some common classes of phylogenetic networks such phylogenetic trees and level-1 networks. More specifically, we define a polynomial <em>F</em> that is a complete invariant for the class of rooted cactuses without vertices of indegree 1 and outdegree 1 that has 5 variables, and a polynomial <em>Q</em> that is a complete invariant for the class of rooted cactuses that has 6 variables whose degree can be bounded linearly in terms of the size of the rooted cactus. We also explain how to extend the <em>Q</em> polynomial to define a complete invariant for leaf-labelled rooted cactuses as well as (unrooted) cactuses.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"182 \",\"pages\":\"Article 106394\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019023000376\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019023000376","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Graph invariants are a useful tool in graph theory. Not only do they encode useful information about the graphs to which they are associated, but complete invariants can be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs such as the well-known Tutte polynomial have been studied for several years, and recently there has been interest to also define such invariants for phylogenetic networks, a special type of graph that arises in the area of evolutionary biology. Recently Liu gave a complete invariant for (phylogenetic) trees. However, the polynomial invariants defined thus far for phylogenetic networks that are not trees require vertex labels and either contain a large number of variables, or they have exponentially many terms in the number of reticulations. This can make it difficult to compute these polynomials and to use them to analyse unlabelled networks. In this paper, we shall show how to circumvent some of these difficulties for rooted cactuses and cactuses. As well as being important in other areas such as operations research, rooted cactuses contain some common classes of phylogenetic networks such phylogenetic trees and level-1 networks. More specifically, we define a polynomial F that is a complete invariant for the class of rooted cactuses without vertices of indegree 1 and outdegree 1 that has 5 variables, and a polynomial Q that is a complete invariant for the class of rooted cactuses that has 6 variables whose degree can be bounded linearly in terms of the size of the rooted cactus. We also explain how to extend the Q polynomial to define a complete invariant for leaf-labelled rooted cactuses as well as (unrooted) cactuses.
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.