大型语言模型输出的评价:语篇与记忆

Adrian de Wynter , Xun Wang , Alex Sokolov , Qilong Gu , Si-Qing Chen
{"title":"大型语言模型输出的评价:语篇与记忆","authors":"Adrian de Wynter ,&nbsp;Xun Wang ,&nbsp;Alex Sokolov ,&nbsp;Qilong Gu ,&nbsp;Si-Qing Chen","doi":"10.1016/j.nlp.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, <span><math><mrow><mn>80</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span> of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An evaluation on large language model outputs: Discourse and memorization\",\"authors\":\"Adrian de Wynter ,&nbsp;Xun Wang ,&nbsp;Alex Sokolov ,&nbsp;Qilong Gu ,&nbsp;Si-Qing Chen\",\"doi\":\"10.1016/j.nlp.2023.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, <span><math><mrow><mn>80</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span> of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"4 \",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719123000213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719123000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们对九种最广泛可用的大型语言模型(LLM)产生的各种输出进行了实证评估。我们的分析是用现成的现成工具完成的。我们发现,当衡量输出病理时,记忆文本的百分比、唯一文本的百分比和整体输出质量之间存在相关性,如反事实和逻辑错误的陈述,以及不专注于主题等一般失败。总体而言,80.0%的评估输出包含记忆数据,但包含最多记忆内容的输出也更有可能被认为是高质量的。我们讨论并评估了缓解策略,表明在评估的模型中,记忆文本的输出率降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation on large language model outputs: Discourse and memorization

We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, 80.0% of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信