Asad Elmgerbi , Ibrahim Abou Askar , Alexander Fine , Gerhard Thonhauser , Rahman Ashena
{"title":"纤维素纳米晶体(CNCs)作为改善API G类水泥性能的潜在添加剂:实验研究","authors":"Asad Elmgerbi , Ibrahim Abou Askar , Alexander Fine , Gerhard Thonhauser , Rahman Ashena","doi":"10.1016/j.ngib.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Integral cement sheaths are crucial for safe and economical hydrocarbon production throughout the well lifecycle. Cement additives tailor short- and long-term cement properties for various well conditions to ensure well integrity. Although various additives exist, the current trend in reducing the carbon footprint motivates the developing \"greener” additives that are environmentally friendly and made from renewable and sustainable sources such as cellulose nanocrystals (CNC). CNCs exhibit superior properties and have shown significant impact on cement slurry, including increased degree of hydration, strength, and altered properties. However, most studies on CNCs are intended for construction industry rather than hydrocarbon and geothermal well cementing. Investigating the use of CNCs as high-performance cement additives is therefore of interest due to their potential benefits. This study aims to determine the effect of CNC on vital well cement properties. The effects of CNC were determined using standard American Petroleum Institute (API) test procedures and equipment in an experimental approach. The experimental findings indicate that the addition of cellulose nanocrystals (CNC) at a concentration of 2 vol% resulted in a notable increase of 7% in viscosity, a significant decrease of 50% in free water, a remarkable reduction of 78% in cement shrinkage, and no discernible effect on slurry thickening time. Furthermore, the inclusion of a 0.2 vol% of CNC yielded a significant surge of 56% in compressive strength after 21 days and accelerated 500 psi strength development by 9%. However, the investigation revealed that a concentration of 1.5 vol% of CNC represents a threshold concentration or the turning point, beyond which the addition of CNC can negatively impact the studied cement properties.</p></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":"10 3","pages":"Pages 233-244"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose nanocrystals (CNCs) as a potential additive for improving API class G cement performance: An experimental study\",\"authors\":\"Asad Elmgerbi , Ibrahim Abou Askar , Alexander Fine , Gerhard Thonhauser , Rahman Ashena\",\"doi\":\"10.1016/j.ngib.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integral cement sheaths are crucial for safe and economical hydrocarbon production throughout the well lifecycle. Cement additives tailor short- and long-term cement properties for various well conditions to ensure well integrity. Although various additives exist, the current trend in reducing the carbon footprint motivates the developing \\\"greener” additives that are environmentally friendly and made from renewable and sustainable sources such as cellulose nanocrystals (CNC). CNCs exhibit superior properties and have shown significant impact on cement slurry, including increased degree of hydration, strength, and altered properties. However, most studies on CNCs are intended for construction industry rather than hydrocarbon and geothermal well cementing. Investigating the use of CNCs as high-performance cement additives is therefore of interest due to their potential benefits. This study aims to determine the effect of CNC on vital well cement properties. The effects of CNC were determined using standard American Petroleum Institute (API) test procedures and equipment in an experimental approach. The experimental findings indicate that the addition of cellulose nanocrystals (CNC) at a concentration of 2 vol% resulted in a notable increase of 7% in viscosity, a significant decrease of 50% in free water, a remarkable reduction of 78% in cement shrinkage, and no discernible effect on slurry thickening time. Furthermore, the inclusion of a 0.2 vol% of CNC yielded a significant surge of 56% in compressive strength after 21 days and accelerated 500 psi strength development by 9%. However, the investigation revealed that a concentration of 1.5 vol% of CNC represents a threshold concentration or the turning point, beyond which the addition of CNC can negatively impact the studied cement properties.</p></div>\",\"PeriodicalId\":37116,\"journal\":{\"name\":\"Natural Gas Industry B\",\"volume\":\"10 3\",\"pages\":\"Pages 233-244\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Gas Industry B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352854023000293\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854023000293","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Cellulose nanocrystals (CNCs) as a potential additive for improving API class G cement performance: An experimental study
Integral cement sheaths are crucial for safe and economical hydrocarbon production throughout the well lifecycle. Cement additives tailor short- and long-term cement properties for various well conditions to ensure well integrity. Although various additives exist, the current trend in reducing the carbon footprint motivates the developing "greener” additives that are environmentally friendly and made from renewable and sustainable sources such as cellulose nanocrystals (CNC). CNCs exhibit superior properties and have shown significant impact on cement slurry, including increased degree of hydration, strength, and altered properties. However, most studies on CNCs are intended for construction industry rather than hydrocarbon and geothermal well cementing. Investigating the use of CNCs as high-performance cement additives is therefore of interest due to their potential benefits. This study aims to determine the effect of CNC on vital well cement properties. The effects of CNC were determined using standard American Petroleum Institute (API) test procedures and equipment in an experimental approach. The experimental findings indicate that the addition of cellulose nanocrystals (CNC) at a concentration of 2 vol% resulted in a notable increase of 7% in viscosity, a significant decrease of 50% in free water, a remarkable reduction of 78% in cement shrinkage, and no discernible effect on slurry thickening time. Furthermore, the inclusion of a 0.2 vol% of CNC yielded a significant surge of 56% in compressive strength after 21 days and accelerated 500 psi strength development by 9%. However, the investigation revealed that a concentration of 1.5 vol% of CNC represents a threshold concentration or the turning point, beyond which the addition of CNC can negatively impact the studied cement properties.