低秩可解基置换群的分类

Mallory Dolorfino , Luke Martin , Zachary Slonim , Yuxuan Sun , Yong Yang
{"title":"低秩可解基置换群的分类","authors":"Mallory Dolorfino ,&nbsp;Luke Martin ,&nbsp;Zachary Slonim ,&nbsp;Yuxuan Sun ,&nbsp;Yong Yang","doi":"10.1016/j.jaca.2023.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose that a finite solvable permutation group <em>G</em> acts faithfully and primitively on a finite set Ω. Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the stabilizer of a point <span><math><mi>α</mi><mo>∈</mo><mi>Ω</mi></math></span> and the rank of <em>G</em> be the number of distinct orbits of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in Ω (including the trivial orbit <span><math><mo>{</mo><mi>α</mi><mo>}</mo></math></span>). Then <em>G</em> always has rank greater than four except for in a few cases. We completely classify these cases in this paper.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"5 ","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying solvable primitive permutation groups of low rank\",\"authors\":\"Mallory Dolorfino ,&nbsp;Luke Martin ,&nbsp;Zachary Slonim ,&nbsp;Yuxuan Sun ,&nbsp;Yong Yang\",\"doi\":\"10.1016/j.jaca.2023.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suppose that a finite solvable permutation group <em>G</em> acts faithfully and primitively on a finite set Ω. Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the stabilizer of a point <span><math><mi>α</mi><mo>∈</mo><mi>Ω</mi></math></span> and the rank of <em>G</em> be the number of distinct orbits of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in Ω (including the trivial orbit <span><math><mo>{</mo><mi>α</mi><mo>}</mo></math></span>). Then <em>G</em> always has rank greater than four except for in a few cases. We completely classify these cases in this paper.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"5 \",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827723000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827723000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设一个有限可解置换群G忠实且原始地作用于一个有限集Ω上。设G0是点α∈Ω的稳定器,G的秩是G0在Ω中的不同轨道的数目(包括平凡轨道{α})。那么除了少数情况外,G的秩总是大于4。在本文中,我们对这些案例进行了完整的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying solvable primitive permutation groups of low rank

Suppose that a finite solvable permutation group G acts faithfully and primitively on a finite set Ω. Let G0 be the stabilizer of a point αΩ and the rank of G be the number of distinct orbits of G0 in Ω (including the trivial orbit {α}). Then G always has rank greater than four except for in a few cases. We completely classify these cases in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信