Armando Cuevas-Vallejo , José Orozco-Santiago , Sofía Paz-Rodríguez
{"title":"大学生关于向量概念的学习轨迹","authors":"Armando Cuevas-Vallejo , José Orozco-Santiago , Sofía Paz-Rodríguez","doi":"10.1016/j.jmathb.2023.101044","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents and evaluates a hypothetical learning trajectory by which students bridge the transition from elementary to university-level instruction regarding the concept of vector. The trajectory consists of an instructional sequence of five tasks and begins with a problem in context. Each task is carried out with the support of a Virtual Interactive Didactic Scenario, accompanied by exploration and guided learning sheets, in which the problem is introduced through the simulation of the movement of a robotic arm. This proposal was implemented at the beginning of the SARS-CoV-2 pandemic using various digital media. Two teaching experiments were carried out with engineering students at a Mexican public university. We present the hypothetical learning trajectory that should be followed toward solving the task, and contrast it in each case with the students’ actual learning trajectory. The results show that more than 70 % of the students successfully transitioned from the geometrical vector representation of elementary physics to the algebraic one.</p></div>","PeriodicalId":47481,"journal":{"name":"Journal of Mathematical Behavior","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A learning trajectory for university students regarding the concept of vector\",\"authors\":\"Armando Cuevas-Vallejo , José Orozco-Santiago , Sofía Paz-Rodríguez\",\"doi\":\"10.1016/j.jmathb.2023.101044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents and evaluates a hypothetical learning trajectory by which students bridge the transition from elementary to university-level instruction regarding the concept of vector. The trajectory consists of an instructional sequence of five tasks and begins with a problem in context. Each task is carried out with the support of a Virtual Interactive Didactic Scenario, accompanied by exploration and guided learning sheets, in which the problem is introduced through the simulation of the movement of a robotic arm. This proposal was implemented at the beginning of the SARS-CoV-2 pandemic using various digital media. Two teaching experiments were carried out with engineering students at a Mexican public university. We present the hypothetical learning trajectory that should be followed toward solving the task, and contrast it in each case with the students’ actual learning trajectory. The results show that more than 70 % of the students successfully transitioned from the geometrical vector representation of elementary physics to the algebraic one.</p></div>\",\"PeriodicalId\":47481,\"journal\":{\"name\":\"Journal of Mathematical Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0732312323000147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Behavior","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0732312323000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
A learning trajectory for university students regarding the concept of vector
This paper presents and evaluates a hypothetical learning trajectory by which students bridge the transition from elementary to university-level instruction regarding the concept of vector. The trajectory consists of an instructional sequence of five tasks and begins with a problem in context. Each task is carried out with the support of a Virtual Interactive Didactic Scenario, accompanied by exploration and guided learning sheets, in which the problem is introduced through the simulation of the movement of a robotic arm. This proposal was implemented at the beginning of the SARS-CoV-2 pandemic using various digital media. Two teaching experiments were carried out with engineering students at a Mexican public university. We present the hypothetical learning trajectory that should be followed toward solving the task, and contrast it in each case with the students’ actual learning trajectory. The results show that more than 70 % of the students successfully transitioned from the geometrical vector representation of elementary physics to the algebraic one.
期刊介绍:
The Journal of Mathematical Behavior solicits original research on the learning and teaching of mathematics. We are interested especially in basic research, research that aims to clarify, in detail and depth, how mathematical ideas develop in learners. Over three decades, our experience confirms a founding premise of this journal: that mathematical thinking, hence mathematics learning as a social enterprise, is special. It is special because mathematics is special, both logically and psychologically. Logically, through the way that mathematical ideas and methods have been built, refined and organized for centuries across a range of cultures; and psychologically, through the variety of ways people today, in many walks of life, make sense of mathematics, develop it, make it their own.