西奥对基于集合推理的条件语句证明逻辑的再创造

IF 1 Q3 EDUCATION & EDUCATIONAL RESEARCH
Paul Christian Dawkins , Kyeong Hah Roh , Derek Eckman
{"title":"西奥对基于集合推理的条件语句证明逻辑的再创造","authors":"Paul Christian Dawkins ,&nbsp;Kyeong Hah Roh ,&nbsp;Derek Eckman","doi":"10.1016/j.jmathb.2023.101043","DOIUrl":null,"url":null,"abstract":"<div><p>This report documents how one undergraduate student used set-based reasoning to reinvent logical principles related to conditional statements and their proofs. This learning occurred in a teaching experiment intended to foster abstraction of these logical relationships by comparing the relationships between predicates within the conditional statements and inference structures among various proofs (in number theory and geometry). We document the progression of Theo’s set-based emergent model (Gravemeijer, 1999) from a model-of the truth of statements to a model-for logical relationships. This constitutes some of the first evidence for how students can abstract such logical concepts in this way and provides evidence for the viability of the learning progression that guided the instructional design.</p></div>","PeriodicalId":47481,"journal":{"name":"Journal of Mathematical Behavior","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theo’s reinvention of the logic of conditional statements’ proofs rooted in set-based reasoning\",\"authors\":\"Paul Christian Dawkins ,&nbsp;Kyeong Hah Roh ,&nbsp;Derek Eckman\",\"doi\":\"10.1016/j.jmathb.2023.101043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This report documents how one undergraduate student used set-based reasoning to reinvent logical principles related to conditional statements and their proofs. This learning occurred in a teaching experiment intended to foster abstraction of these logical relationships by comparing the relationships between predicates within the conditional statements and inference structures among various proofs (in number theory and geometry). We document the progression of Theo’s set-based emergent model (Gravemeijer, 1999) from a model-of the truth of statements to a model-for logical relationships. This constitutes some of the first evidence for how students can abstract such logical concepts in this way and provides evidence for the viability of the learning progression that guided the instructional design.</p></div>\",\"PeriodicalId\":47481,\"journal\":{\"name\":\"Journal of Mathematical Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0732312323000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Behavior","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0732312323000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

这份报告记录了一名本科生如何使用基于集合的推理来重塑与条件陈述及其证明相关的逻辑原理。这种学习发生在一个教学实验中,该实验旨在通过比较条件语句中的谓词和各种证明(数论和几何)之间的推理结构之间的关系来促进这些逻辑关系的抽象。我们记录了Theo基于集合的涌现模型(Gravemeijer,1999)从陈述的真实性模型到逻辑关系模型的进展。这构成了学生如何以这种方式抽象这些逻辑概念的一些初步证据,并为指导教学设计的学习进展的可行性提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theo’s reinvention of the logic of conditional statements’ proofs rooted in set-based reasoning

This report documents how one undergraduate student used set-based reasoning to reinvent logical principles related to conditional statements and their proofs. This learning occurred in a teaching experiment intended to foster abstraction of these logical relationships by comparing the relationships between predicates within the conditional statements and inference structures among various proofs (in number theory and geometry). We document the progression of Theo’s set-based emergent model (Gravemeijer, 1999) from a model-of the truth of statements to a model-for logical relationships. This constitutes some of the first evidence for how students can abstract such logical concepts in this way and provides evidence for the viability of the learning progression that guided the instructional design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Behavior
Journal of Mathematical Behavior EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
2.70
自引率
17.60%
发文量
69
期刊介绍: The Journal of Mathematical Behavior solicits original research on the learning and teaching of mathematics. We are interested especially in basic research, research that aims to clarify, in detail and depth, how mathematical ideas develop in learners. Over three decades, our experience confirms a founding premise of this journal: that mathematical thinking, hence mathematics learning as a social enterprise, is special. It is special because mathematics is special, both logically and psychologically. Logically, through the way that mathematical ideas and methods have been built, refined and organized for centuries across a range of cultures; and psychologically, through the variety of ways people today, in many walks of life, make sense of mathematics, develop it, make it their own.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信