{"title":"面积的空间可视化与测量——以数学空间化教学为例","authors":"Danielle Harris, Tracy Logan, Tom Lowrie","doi":"10.1016/j.jmathb.2023.101038","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to explore the influence of spatial visualization skills when students solve area tasks. Spatial visualization is closely related to mathematics achievement, but little is known about how these skills link to task success. We examined middle school students’ representations and solutions to area problems (both non-metric and metric) through qualitative and quantitative task analysis. Task solutions were analyzed as a function of spatial visualization skills and links were made between student solutions on tasks with different goals (i.e., non-metric and metric). Findings suggest that strong spatial visualizers solved the tasks with relative ease, with evidence for conceptual and procedural understanding. By contrast, Low and Average Spatial students more frequently produced errors due to failure to correctly determine linear measurements or apply appropriate formula, despite adequate procedural knowledge. A novel finding was the facilitating role of spatial skills in the link between metric task representation and success in determining a solution. From a teaching and learning perspective, these results highlight the need to connect emergent spatial skills with mathematical content and support students to develop conceptual understanding in parallel with procedural competence.</p></div>","PeriodicalId":47481,"journal":{"name":"Journal of Mathematical Behavior","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial visualization and measurement of area: A case study in spatialized mathematics instruction\",\"authors\":\"Danielle Harris, Tracy Logan, Tom Lowrie\",\"doi\":\"10.1016/j.jmathb.2023.101038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this study was to explore the influence of spatial visualization skills when students solve area tasks. Spatial visualization is closely related to mathematics achievement, but little is known about how these skills link to task success. We examined middle school students’ representations and solutions to area problems (both non-metric and metric) through qualitative and quantitative task analysis. Task solutions were analyzed as a function of spatial visualization skills and links were made between student solutions on tasks with different goals (i.e., non-metric and metric). Findings suggest that strong spatial visualizers solved the tasks with relative ease, with evidence for conceptual and procedural understanding. By contrast, Low and Average Spatial students more frequently produced errors due to failure to correctly determine linear measurements or apply appropriate formula, despite adequate procedural knowledge. A novel finding was the facilitating role of spatial skills in the link between metric task representation and success in determining a solution. From a teaching and learning perspective, these results highlight the need to connect emergent spatial skills with mathematical content and support students to develop conceptual understanding in parallel with procedural competence.</p></div>\",\"PeriodicalId\":47481,\"journal\":{\"name\":\"Journal of Mathematical Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0732312323000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Behavior","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0732312323000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Spatial visualization and measurement of area: A case study in spatialized mathematics instruction
The purpose of this study was to explore the influence of spatial visualization skills when students solve area tasks. Spatial visualization is closely related to mathematics achievement, but little is known about how these skills link to task success. We examined middle school students’ representations and solutions to area problems (both non-metric and metric) through qualitative and quantitative task analysis. Task solutions were analyzed as a function of spatial visualization skills and links were made between student solutions on tasks with different goals (i.e., non-metric and metric). Findings suggest that strong spatial visualizers solved the tasks with relative ease, with evidence for conceptual and procedural understanding. By contrast, Low and Average Spatial students more frequently produced errors due to failure to correctly determine linear measurements or apply appropriate formula, despite adequate procedural knowledge. A novel finding was the facilitating role of spatial skills in the link between metric task representation and success in determining a solution. From a teaching and learning perspective, these results highlight the need to connect emergent spatial skills with mathematical content and support students to develop conceptual understanding in parallel with procedural competence.
期刊介绍:
The Journal of Mathematical Behavior solicits original research on the learning and teaching of mathematics. We are interested especially in basic research, research that aims to clarify, in detail and depth, how mathematical ideas develop in learners. Over three decades, our experience confirms a founding premise of this journal: that mathematical thinking, hence mathematics learning as a social enterprise, is special. It is special because mathematics is special, both logically and psychologically. Logically, through the way that mathematical ideas and methods have been built, refined and organized for centuries across a range of cultures; and psychologically, through the variety of ways people today, in many walks of life, make sense of mathematics, develop it, make it their own.