安达曼海温跃层的季节内振荡

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY
Sreedevi P. Vasu, P.N. Vinayachandran
{"title":"安达曼海温跃层的季节内振荡","authors":"Sreedevi P. Vasu,&nbsp;P.N. Vinayachandran","doi":"10.1016/j.dsr2.2023.105337","DOIUrl":null,"url":null,"abstract":"<div><p><span>Variations in the upper ocean thermal structure have significant implications for air-sea interaction and upper-ocean ecosystem processes. Vertical profiles of temperature measured by a moored buoy located at 10.5°N, 94°E in the Andaman Sea and simulation by an Indian Ocean model are used in this study to characterise the </span>intraseasonal variations<span> (ISV) in the Andaman Sea (AndS) thermal structure and identify their sources. The seasonal variations in the upper ocean thermal structure show a strong semi-annual cycle driven by monsoons. The sub-surface temperature shows significant intraseasonal oscillations within a band of 40–110 days, which are de-coupled from that in the mixed layer, which has dominant periodicity in the band of 90–120 days. Thermocline<span> ISV are seasonally modulated with a primary peak during August–September and a secondary peak during February–March, with significant year-to-year variations. A cross-wavelet analysis shows that ISV in the 40–60 days period is in phase with that at the eastern boundary and they are locally forced by the passage of eddies. The 60–110 day band is out of phase with the eastern boundary and is forced by Rossby waves radiated from the equatorially generated intraseasonal coastal Kelvin waves.</span></span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"212 ","pages":"Article 105337"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraseasonal oscillations of the Andaman Sea thermocline\",\"authors\":\"Sreedevi P. Vasu,&nbsp;P.N. Vinayachandran\",\"doi\":\"10.1016/j.dsr2.2023.105337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Variations in the upper ocean thermal structure have significant implications for air-sea interaction and upper-ocean ecosystem processes. Vertical profiles of temperature measured by a moored buoy located at 10.5°N, 94°E in the Andaman Sea and simulation by an Indian Ocean model are used in this study to characterise the </span>intraseasonal variations<span> (ISV) in the Andaman Sea (AndS) thermal structure and identify their sources. The seasonal variations in the upper ocean thermal structure show a strong semi-annual cycle driven by monsoons. The sub-surface temperature shows significant intraseasonal oscillations within a band of 40–110 days, which are de-coupled from that in the mixed layer, which has dominant periodicity in the band of 90–120 days. Thermocline<span> ISV are seasonally modulated with a primary peak during August–September and a secondary peak during February–March, with significant year-to-year variations. A cross-wavelet analysis shows that ISV in the 40–60 days period is in phase with that at the eastern boundary and they are locally forced by the passage of eddies. The 60–110 day band is out of phase with the eastern boundary and is forced by Rossby waves radiated from the equatorially generated intraseasonal coastal Kelvin waves.</span></span></p></div>\",\"PeriodicalId\":11120,\"journal\":{\"name\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"volume\":\"212 \",\"pages\":\"Article 105337\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967064523000875\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000875","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

上层海洋热结构的变化对海气相互作用和上层海洋生态系统过程具有重要意义。本研究使用位于安达曼海10.5°N,94°E的系泊浮标测量的温度垂直剖面和印度洋模型的模拟来表征安达曼海热结构的季节内变化(ISV)并确定其来源。上层海洋热结构的季节变化显示出由季风驱动的强烈半年周期。地下温度在40–110天的波段内表现出显著的季节内振荡,这与混合层的温度不耦合,混合层在90–120天的波段具有主导周期性。温跃层ISV受季节性调节,8月至9月为主峰,2月至3月为次峰,逐年变化显著。交叉小波分析表明,40–60天期间的ISV与东部边界的ISV同相,并且它们是受涡流通过的局部强迫。60–110天的波段与东部边界异相,并受到季节内海岸Kelvin波辐射的Rossby波的强迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intraseasonal oscillations of the Andaman Sea thermocline

Variations in the upper ocean thermal structure have significant implications for air-sea interaction and upper-ocean ecosystem processes. Vertical profiles of temperature measured by a moored buoy located at 10.5°N, 94°E in the Andaman Sea and simulation by an Indian Ocean model are used in this study to characterise the intraseasonal variations (ISV) in the Andaman Sea (AndS) thermal structure and identify their sources. The seasonal variations in the upper ocean thermal structure show a strong semi-annual cycle driven by monsoons. The sub-surface temperature shows significant intraseasonal oscillations within a band of 40–110 days, which are de-coupled from that in the mixed layer, which has dominant periodicity in the band of 90–120 days. Thermocline ISV are seasonally modulated with a primary peak during August–September and a secondary peak during February–March, with significant year-to-year variations. A cross-wavelet analysis shows that ISV in the 40–60 days period is in phase with that at the eastern boundary and they are locally forced by the passage of eddies. The 60–110 day band is out of phase with the eastern boundary and is forced by Rossby waves radiated from the equatorially generated intraseasonal coastal Kelvin waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信