再现核Hilbert空间中的投影发散性:渐近正态性、分块和切片估计以及计算效率

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yilin Zhang, Liping Zhu
{"title":"再现核Hilbert空间中的投影发散性:渐近正态性、分块和切片估计以及计算效率","authors":"Yilin Zhang,&nbsp;Liping Zhu","doi":"10.1016/j.jmva.2023.105204","DOIUrl":null,"url":null,"abstract":"<div><p><span>We introduce projection divergence in the reproducing kernel Hilbert space to test for statistical independence and measure the degree of nonlinear dependence. We suggest a slicing procedure to estimate the kernel projection divergence, which divides a random sample of size </span><span><math><mi>n</mi></math></span> into <span><math><mi>H</mi></math></span> slices, each of size <span><math><mi>c</mi></math></span>. The entire procedure has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which is prohibitive if <span><math><mi>n</mi></math></span> is extremely large. To alleviate computational complexity, we implement this slicing procedure together with a block-wise estimation, which divides the whole sample into <span><math><mi>B</mi></math></span> blocks, each of size <span><math><mi>d</mi></math></span>. This block-wise and slicing estimation has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>+</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, which reduces the computational complexity substantially if <span><math><mi>c</mi></math></span> and <span><math><mi>d</mi></math></span> are relatively small. The resultant estimation is asymptotically normal and has the convergence rate of <span><math><msup><mrow><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mi>d</mi><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span><span>. More importantly, this block-wise implementation has the same asymptotic properties as the naive slicing estimation, if </span><span><math><mi>c</mi></math></span> is relatively small, indicating that the block-wise implementation does not result in power loss in independence tests. We demonstrate the computational efficiencies and theoretical properties of this block-wise and slicing estimation through simulations and an application to psychological datasets.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projection divergence in the reproducing kernel Hilbert space: Asymptotic normality, block-wise and slicing estimation, and computational efficiency\",\"authors\":\"Yilin Zhang,&nbsp;Liping Zhu\",\"doi\":\"10.1016/j.jmva.2023.105204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We introduce projection divergence in the reproducing kernel Hilbert space to test for statistical independence and measure the degree of nonlinear dependence. We suggest a slicing procedure to estimate the kernel projection divergence, which divides a random sample of size </span><span><math><mi>n</mi></math></span> into <span><math><mi>H</mi></math></span> slices, each of size <span><math><mi>c</mi></math></span>. The entire procedure has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which is prohibitive if <span><math><mi>n</mi></math></span> is extremely large. To alleviate computational complexity, we implement this slicing procedure together with a block-wise estimation, which divides the whole sample into <span><math><mi>B</mi></math></span> blocks, each of size <span><math><mi>d</mi></math></span>. This block-wise and slicing estimation has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>+</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, which reduces the computational complexity substantially if <span><math><mi>c</mi></math></span> and <span><math><mi>d</mi></math></span> are relatively small. The resultant estimation is asymptotically normal and has the convergence rate of <span><math><msup><mrow><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mi>d</mi><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span><span>. More importantly, this block-wise implementation has the same asymptotic properties as the naive slicing estimation, if </span><span><math><mi>c</mi></math></span> is relatively small, indicating that the block-wise implementation does not result in power loss in independence tests. We demonstrate the computational efficiencies and theoretical properties of this block-wise and slicing estimation through simulations and an application to psychological datasets.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000507\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们在再生核希尔伯特空间中引入投影散度来测试统计独立性,并测量非线性依赖度。我们提出了一种估计核投影散度的切片过程,该过程将大小为n的随机样本划分为H个切片,每个切片的大小为c。整个过程的复杂性为O(n2),如果n非常大,这是令人望而却步的。为了降低计算复杂性,我们将这种切片过程与逐块估计一起实现,该逐块估计将整个样本划分为B个块,每个块的大小为d。这种逐块和切片估计的复杂性为O{n(c+d+logn)},如果c和d相对较小,则这大大降低了计算复杂性。所得估计是渐近正态的,收敛速度为{n(cd)/(c+d)}−1/2。更重要的是,如果c相对较小,则这种分块实现与天真切片估计具有相同的渐近性质,这表明分块实现在独立性测试中不会导致功率损失。我们通过模拟和心理数据集的应用,展示了这种分块和切片估计的计算效率和理论性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection divergence in the reproducing kernel Hilbert space: Asymptotic normality, block-wise and slicing estimation, and computational efficiency

We introduce projection divergence in the reproducing kernel Hilbert space to test for statistical independence and measure the degree of nonlinear dependence. We suggest a slicing procedure to estimate the kernel projection divergence, which divides a random sample of size n into H slices, each of size c. The entire procedure has the complexity of O(n2), which is prohibitive if n is extremely large. To alleviate computational complexity, we implement this slicing procedure together with a block-wise estimation, which divides the whole sample into B blocks, each of size d. This block-wise and slicing estimation has the complexity of O{n(c+d+logn)}, which reduces the computational complexity substantially if c and d are relatively small. The resultant estimation is asymptotically normal and has the convergence rate of {n(cd)/(c+d)}1/2. More importantly, this block-wise implementation has the same asymptotic properties as the naive slicing estimation, if c is relatively small, indicating that the block-wise implementation does not result in power loss in independence tests. We demonstrate the computational efficiencies and theoretical properties of this block-wise and slicing estimation through simulations and an application to psychological datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信