{"title":"再现核Hilbert空间中的投影发散性:渐近正态性、分块和切片估计以及计算效率","authors":"Yilin Zhang, Liping Zhu","doi":"10.1016/j.jmva.2023.105204","DOIUrl":null,"url":null,"abstract":"<div><p><span>We introduce projection divergence in the reproducing kernel Hilbert space to test for statistical independence and measure the degree of nonlinear dependence. We suggest a slicing procedure to estimate the kernel projection divergence, which divides a random sample of size </span><span><math><mi>n</mi></math></span> into <span><math><mi>H</mi></math></span> slices, each of size <span><math><mi>c</mi></math></span>. The entire procedure has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which is prohibitive if <span><math><mi>n</mi></math></span> is extremely large. To alleviate computational complexity, we implement this slicing procedure together with a block-wise estimation, which divides the whole sample into <span><math><mi>B</mi></math></span> blocks, each of size <span><math><mi>d</mi></math></span>. This block-wise and slicing estimation has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>+</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, which reduces the computational complexity substantially if <span><math><mi>c</mi></math></span> and <span><math><mi>d</mi></math></span> are relatively small. The resultant estimation is asymptotically normal and has the convergence rate of <span><math><msup><mrow><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mi>d</mi><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span><span>. More importantly, this block-wise implementation has the same asymptotic properties as the naive slicing estimation, if </span><span><math><mi>c</mi></math></span> is relatively small, indicating that the block-wise implementation does not result in power loss in independence tests. We demonstrate the computational efficiencies and theoretical properties of this block-wise and slicing estimation through simulations and an application to psychological datasets.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projection divergence in the reproducing kernel Hilbert space: Asymptotic normality, block-wise and slicing estimation, and computational efficiency\",\"authors\":\"Yilin Zhang, Liping Zhu\",\"doi\":\"10.1016/j.jmva.2023.105204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We introduce projection divergence in the reproducing kernel Hilbert space to test for statistical independence and measure the degree of nonlinear dependence. We suggest a slicing procedure to estimate the kernel projection divergence, which divides a random sample of size </span><span><math><mi>n</mi></math></span> into <span><math><mi>H</mi></math></span> slices, each of size <span><math><mi>c</mi></math></span>. The entire procedure has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which is prohibitive if <span><math><mi>n</mi></math></span> is extremely large. To alleviate computational complexity, we implement this slicing procedure together with a block-wise estimation, which divides the whole sample into <span><math><mi>B</mi></math></span> blocks, each of size <span><math><mi>d</mi></math></span>. This block-wise and slicing estimation has the complexity of <span><math><mrow><mi>O</mi><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>+</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, which reduces the computational complexity substantially if <span><math><mi>c</mi></math></span> and <span><math><mi>d</mi></math></span> are relatively small. The resultant estimation is asymptotically normal and has the convergence rate of <span><math><msup><mrow><mrow><mo>{</mo><mi>n</mi><mrow><mo>(</mo><mi>c</mi><mi>d</mi><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span><span>. More importantly, this block-wise implementation has the same asymptotic properties as the naive slicing estimation, if </span><span><math><mi>c</mi></math></span> is relatively small, indicating that the block-wise implementation does not result in power loss in independence tests. We demonstrate the computational efficiencies and theoretical properties of this block-wise and slicing estimation through simulations and an application to psychological datasets.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000507\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Projection divergence in the reproducing kernel Hilbert space: Asymptotic normality, block-wise and slicing estimation, and computational efficiency
We introduce projection divergence in the reproducing kernel Hilbert space to test for statistical independence and measure the degree of nonlinear dependence. We suggest a slicing procedure to estimate the kernel projection divergence, which divides a random sample of size into slices, each of size . The entire procedure has the complexity of , which is prohibitive if is extremely large. To alleviate computational complexity, we implement this slicing procedure together with a block-wise estimation, which divides the whole sample into blocks, each of size . This block-wise and slicing estimation has the complexity of , which reduces the computational complexity substantially if and are relatively small. The resultant estimation is asymptotically normal and has the convergence rate of . More importantly, this block-wise implementation has the same asymptotic properties as the naive slicing estimation, if is relatively small, indicating that the block-wise implementation does not result in power loss in independence tests. We demonstrate the computational efficiencies and theoretical properties of this block-wise and slicing estimation through simulations and an application to psychological datasets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.