群行列式中的项数

Naoya Yamaguchi, Yuka Yamaguchi
{"title":"群行列式中的项数","authors":"Naoya Yamaguchi,&nbsp;Yuka Yamaguchi","doi":"10.1016/j.exco.2023.100112","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove that when the number of terms in the group determinant of order odd prime <span><math><mi>p</mi></math></span> is divided by <span><math><mi>p</mi></math></span>, the remainder is 1. In addition, we give a table of the number of terms in <span><math><mi>k</mi></math></span>th power of the group determinant of the cyclic group of order <span><math><mi>n</mi></math></span> for <span><math><mrow><mi>n</mi><mo>≤</mo><mn>10</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≤</mo><mn>6</mn></mrow></math></span>, and also give a table of one for every group of order at most 15. These tables raise some questions for us about the number of terms in the group determinants.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Number of terms in the group determinant\",\"authors\":\"Naoya Yamaguchi,&nbsp;Yuka Yamaguchi\",\"doi\":\"10.1016/j.exco.2023.100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove that when the number of terms in the group determinant of order odd prime <span><math><mi>p</mi></math></span> is divided by <span><math><mi>p</mi></math></span>, the remainder is 1. In addition, we give a table of the number of terms in <span><math><mi>k</mi></math></span>th power of the group determinant of the cyclic group of order <span><math><mi>n</mi></math></span> for <span><math><mrow><mi>n</mi><mo>≤</mo><mn>10</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≤</mo><mn>6</mn></mrow></math></span>, and also give a table of one for every group of order at most 15. These tables raise some questions for us about the number of terms in the group determinants.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们证明了当阶奇素数p的群行列式中的项数除以p时,余数为1。此外,对于n≤10和k≤6,我们给出了n阶循环群的群行列式的k次方项数的表,并且对于至多15阶的每个群,我们也给出了一个1的表。这些表格为我们提出了一些关于群行列式中的项数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Number of terms in the group determinant

In this paper, we prove that when the number of terms in the group determinant of order odd prime p is divided by p, the remainder is 1. In addition, we give a table of the number of terms in kth power of the group determinant of the cyclic group of order n for n10 and k6, and also give a table of one for every group of order at most 15. These tables raise some questions for us about the number of terms in the group determinants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信