{"title":"靶向肉瘤相关抗原乳头瘤病毒结合因子的T细胞受体工程化T细胞的开发。","authors":"Shuto Hamada, Tomohide Tsukahara, Yuto Watanabe, Kenji Murata, Yuka Mizue, Terufumi Kubo, Takayuki Kanaseki, Yoshihiko Hirohashi, Makoto Emori, Munehide Nakatsugawa, Atsushi Teramoto, Toshihiko Yamashita, Toshihiko Torigoe","doi":"10.1111/cas.15967","DOIUrl":null,"url":null,"abstract":"<p>We previously identified papillomavirus binding factor (PBF) as an osteosarcoma antigen recognized by an autologous cytotoxic T lymphocyte clone. Vaccination with PBF-derived peptide presented by HLA-A24 (PBF peptide) elicited strong immune responses. In the present study, we generated T cell receptor-engineered T cells (TCR-T cells) directed against the PBF peptide (PBF TCR-T cells). PBF TCR was successfully transduced into T cells and detected using HLA-A*24:02/PBF peptide tetramer. PBF TCR-T cells generated from a healthy donor were highly expanded and recognized T2-A24 cells pulsed with PBF peptide, HLA-A24<sup>+</sup> 293T cells transfected with PBF cDNA, and sarcoma cell lines. To establish an adoptive cell therapy model, we modified the PBF TCR by replacing both α and β constant regions with those of mice (hybrid PBF TCR). Hybrid PBF TCR-T cells also showed reactivity against T2-A24 cells pulsed with PBF peptide and to HLA-A24<sup>+</sup> 293T cells transfected with various lengths of PBF cDNA including the PBF peptide sequence. Subsequently, we generated target cell lines highly expressing PBF (MFH03-PBF [short] epitope [+]) containing PBF peptide with in vivo tumorigenicity. Hybrid PBF TCR-T cells exhibited antitumor effects compared with mock T cells in NSG mice xenografted with MFH03-PBF (short) epitope (+) cells. CD45<sup>+</sup> T cells significantly infiltrated xenografted tumors only in the hybrid PBF TCR T cell group and most of these cells were CD8-positive. CD8<sup>+</sup> T cells also showed Ki-67 expression and surrounded the CD8-negative tumor cells expressing Ki-67. These findings suggest that PBF TCR-T cell therapy might be a candidate immunotherapy for sarcoma highly expressing PBF.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 1","pages":"24-35"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823292/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of T cell receptor-engineered T cells targeting the sarcoma-associated antigen papillomavirus binding factor\",\"authors\":\"Shuto Hamada, Tomohide Tsukahara, Yuto Watanabe, Kenji Murata, Yuka Mizue, Terufumi Kubo, Takayuki Kanaseki, Yoshihiko Hirohashi, Makoto Emori, Munehide Nakatsugawa, Atsushi Teramoto, Toshihiko Yamashita, Toshihiko Torigoe\",\"doi\":\"10.1111/cas.15967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We previously identified papillomavirus binding factor (PBF) as an osteosarcoma antigen recognized by an autologous cytotoxic T lymphocyte clone. Vaccination with PBF-derived peptide presented by HLA-A24 (PBF peptide) elicited strong immune responses. In the present study, we generated T cell receptor-engineered T cells (TCR-T cells) directed against the PBF peptide (PBF TCR-T cells). PBF TCR was successfully transduced into T cells and detected using HLA-A*24:02/PBF peptide tetramer. PBF TCR-T cells generated from a healthy donor were highly expanded and recognized T2-A24 cells pulsed with PBF peptide, HLA-A24<sup>+</sup> 293T cells transfected with PBF cDNA, and sarcoma cell lines. To establish an adoptive cell therapy model, we modified the PBF TCR by replacing both α and β constant regions with those of mice (hybrid PBF TCR). Hybrid PBF TCR-T cells also showed reactivity against T2-A24 cells pulsed with PBF peptide and to HLA-A24<sup>+</sup> 293T cells transfected with various lengths of PBF cDNA including the PBF peptide sequence. Subsequently, we generated target cell lines highly expressing PBF (MFH03-PBF [short] epitope [+]) containing PBF peptide with in vivo tumorigenicity. Hybrid PBF TCR-T cells exhibited antitumor effects compared with mock T cells in NSG mice xenografted with MFH03-PBF (short) epitope (+) cells. CD45<sup>+</sup> T cells significantly infiltrated xenografted tumors only in the hybrid PBF TCR T cell group and most of these cells were CD8-positive. CD8<sup>+</sup> T cells also showed Ki-67 expression and surrounded the CD8-negative tumor cells expressing Ki-67. These findings suggest that PBF TCR-T cell therapy might be a candidate immunotherapy for sarcoma highly expressing PBF.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 1\",\"pages\":\"24-35\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.15967\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.15967","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Development of T cell receptor-engineered T cells targeting the sarcoma-associated antigen papillomavirus binding factor
We previously identified papillomavirus binding factor (PBF) as an osteosarcoma antigen recognized by an autologous cytotoxic T lymphocyte clone. Vaccination with PBF-derived peptide presented by HLA-A24 (PBF peptide) elicited strong immune responses. In the present study, we generated T cell receptor-engineered T cells (TCR-T cells) directed against the PBF peptide (PBF TCR-T cells). PBF TCR was successfully transduced into T cells and detected using HLA-A*24:02/PBF peptide tetramer. PBF TCR-T cells generated from a healthy donor were highly expanded and recognized T2-A24 cells pulsed with PBF peptide, HLA-A24+ 293T cells transfected with PBF cDNA, and sarcoma cell lines. To establish an adoptive cell therapy model, we modified the PBF TCR by replacing both α and β constant regions with those of mice (hybrid PBF TCR). Hybrid PBF TCR-T cells also showed reactivity against T2-A24 cells pulsed with PBF peptide and to HLA-A24+ 293T cells transfected with various lengths of PBF cDNA including the PBF peptide sequence. Subsequently, we generated target cell lines highly expressing PBF (MFH03-PBF [short] epitope [+]) containing PBF peptide with in vivo tumorigenicity. Hybrid PBF TCR-T cells exhibited antitumor effects compared with mock T cells in NSG mice xenografted with MFH03-PBF (short) epitope (+) cells. CD45+ T cells significantly infiltrated xenografted tumors only in the hybrid PBF TCR T cell group and most of these cells were CD8-positive. CD8+ T cells also showed Ki-67 expression and surrounded the CD8-negative tumor cells expressing Ki-67. These findings suggest that PBF TCR-T cell therapy might be a candidate immunotherapy for sarcoma highly expressing PBF.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.