{"title":"从医学物理学家的角度看离子束疗法的产生、进化和未来挑战(第3部分):第3章。临床研究,第4章。未来的挑战,第5章。讨论和结论。","authors":"Masahiro Endo","doi":"10.1007/s12194-023-00748-9","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac's neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron's helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1-3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"443-470"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creation, evolution, and future challenges of ion beam therapy from a medical physicist's viewpoint (Part 3): Chapter 3. Clinical research, Chapter 4. Future challenges, Chapter 5. Discussion, and Conclusion.\",\"authors\":\"Masahiro Endo\",\"doi\":\"10.1007/s12194-023-00748-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac's neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron's helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1-3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"443-470\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-023-00748-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00748-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Creation, evolution, and future challenges of ion beam therapy from a medical physicist's viewpoint (Part 3): Chapter 3. Clinical research, Chapter 4. Future challenges, Chapter 5. Discussion, and Conclusion.
Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac's neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron's helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1-3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.