Shahid Ullah, Wajeeha Rahman, Farhan Ullah, Anees Ullah, Riffat Jehan, Muhammad Nasir Iqbal, Muhammad Irfan
{"title":"利用生物信息学方法对新冠肺炎药物再利用的分子动力学模拟分析。","authors":"Shahid Ullah, Wajeeha Rahman, Farhan Ullah, Anees Ullah, Riffat Jehan, Muhammad Nasir Iqbal, Muhammad Irfan","doi":"10.1080/07391102.2023.2256864","DOIUrl":null,"url":null,"abstract":"<p><p>A number of multidisciplinary methods have piqued the interest of researchers as means to accelerate and lower the cost of medication creation. The goal of this research was to find target proteins and then select a lead drug against SARS-CoV-2. The three-dimensional structure is taken from the RCSB PDB using its specific PDB ID 6lu7. Virtual screening based on pharmacophores is performed using Molecular Operating Environment software. We looked for a potent inhibitor in the FDA-approved database. For docking, AutoDock Vina uses Pyrx. The compound-target protein binding interactions were tested using BIOVIA Discovery Studio. The stability of protein and inhibitor complexes in a physiological setting was investigated using Desmond's Molecular Dynamics Simulation (MD simulation). According to our findings, we repurpose the FDA-approved drugs ZINC000169677008 and ZINC000169289767, which inhibit the activity of the virus's main protease (6lu7). The scientific community will gain from this finding, which might create new medicine. The novel repurposed chemicals were promising inhibitors with increased efficacy and fewer side effects.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9561-9570"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A molecular dynamics simulations analysis of repurposing drugs for COVID-19 using bioinformatics methods.\",\"authors\":\"Shahid Ullah, Wajeeha Rahman, Farhan Ullah, Anees Ullah, Riffat Jehan, Muhammad Nasir Iqbal, Muhammad Irfan\",\"doi\":\"10.1080/07391102.2023.2256864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A number of multidisciplinary methods have piqued the interest of researchers as means to accelerate and lower the cost of medication creation. The goal of this research was to find target proteins and then select a lead drug against SARS-CoV-2. The three-dimensional structure is taken from the RCSB PDB using its specific PDB ID 6lu7. Virtual screening based on pharmacophores is performed using Molecular Operating Environment software. We looked for a potent inhibitor in the FDA-approved database. For docking, AutoDock Vina uses Pyrx. The compound-target protein binding interactions were tested using BIOVIA Discovery Studio. The stability of protein and inhibitor complexes in a physiological setting was investigated using Desmond's Molecular Dynamics Simulation (MD simulation). According to our findings, we repurpose the FDA-approved drugs ZINC000169677008 and ZINC000169289767, which inhibit the activity of the virus's main protease (6lu7). The scientific community will gain from this finding, which might create new medicine. The novel repurposed chemicals were promising inhibitors with increased efficacy and fewer side effects.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"9561-9570\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2256864\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2256864","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
许多多学科方法作为加速和降低药物开发成本的手段,引起了研究人员的兴趣。这项研究的目标是找到靶蛋白,然后选择一种对抗严重急性呼吸系统综合征冠状病毒2型的主要药物。三维结构取自RCSB PDB,使用其特定的PDB ID 6lu7。使用分子操作环境软件进行基于药效团的虚拟筛选。我们在美国食品药品监督管理局批准的数据库中寻找一种强效抑制剂。对于对接,AutoDock Vina使用Pyrx。使用BIOVIA Discovery Studio测试化合物-靶蛋白结合相互作用。使用Desmond的分子动力学模拟(MD模拟)研究了蛋白质和抑制剂复合物在生理环境中的稳定性。根据我们的发现,我们重新利用了美国食品药品监督管理局批准的药物ZINC000169677008和ZINC000169289767,它们抑制病毒主要蛋白酶(6lu7)的活性。科学界将从这一发现中获益,这可能会创造出新的医学。这种新的重新利用的化学物质是有前景的抑制剂,具有更高的疗效和更少的副作用。Ramaswamy H.Sarma通讯。
A molecular dynamics simulations analysis of repurposing drugs for COVID-19 using bioinformatics methods.
A number of multidisciplinary methods have piqued the interest of researchers as means to accelerate and lower the cost of medication creation. The goal of this research was to find target proteins and then select a lead drug against SARS-CoV-2. The three-dimensional structure is taken from the RCSB PDB using its specific PDB ID 6lu7. Virtual screening based on pharmacophores is performed using Molecular Operating Environment software. We looked for a potent inhibitor in the FDA-approved database. For docking, AutoDock Vina uses Pyrx. The compound-target protein binding interactions were tested using BIOVIA Discovery Studio. The stability of protein and inhibitor complexes in a physiological setting was investigated using Desmond's Molecular Dynamics Simulation (MD simulation). According to our findings, we repurpose the FDA-approved drugs ZINC000169677008 and ZINC000169289767, which inhibit the activity of the virus's main protease (6lu7). The scientific community will gain from this finding, which might create new medicine. The novel repurposed chemicals were promising inhibitors with increased efficacy and fewer side effects.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.