抗蚜性不同小麦品种叶根球微生物组的研究。

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY
Xinan Li, Chao Wang, Xun Zhu, Vardis Ntoukakis, Tomislav Cernava, Decai Jin
{"title":"抗蚜性不同小麦品种叶根球微生物组的研究。","authors":"Xinan Li, Chao Wang, Xun Zhu, Vardis Ntoukakis, Tomislav Cernava, Decai Jin","doi":"10.1186/s40793-023-00534-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leaf-associated microbes play an important role in plant development and response to exogenous stress. Insect herbivores are known to alter the phyllosphere microbiome. However, whether the host plant's defense against insects is related to the phyllosphere microbiome remains mostly elusive. Here, we investigated bacterial communities in the phyllosphere and endosphere of eight wheat cultivars with differing aphid resistance, grown in the same farmland.</p><p><strong>Results: </strong>The bacterial community in both the phyllosphere and endosphere showed significant differences among most wheat cultivars. The phyllosphere was connected to more complex and stable microbial networks than the endosphere in most wheat cultivars. Moreover, the genera Pantoea, Massilia, and Pseudomonas were found to play a major role in shaping the microbial community in the wheat phyllosphere. Additionally, wheat plants showed phenotype-specific associations with the genera Massilia and Pseudomonas. The abundance of the genus Exiguobacterium in the phyllosphere exhibited a significant negative correlation with the aphid hazard grade in the wheat plants.</p><p><strong>Conclusion: </strong>Communities of leaf-associated microbes in wheat plants were mainly driven by the host genotype. Members of the genus Exiguobacterium may have adverse effects on wheat aphids. Our findings provide new clues supporting the development of aphid control strategies based on phyllosphere microbiome engineering.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594911/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploration of phyllosphere microbiomes in wheat varieties with differing aphid resistance.\",\"authors\":\"Xinan Li, Chao Wang, Xun Zhu, Vardis Ntoukakis, Tomislav Cernava, Decai Jin\",\"doi\":\"10.1186/s40793-023-00534-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Leaf-associated microbes play an important role in plant development and response to exogenous stress. Insect herbivores are known to alter the phyllosphere microbiome. However, whether the host plant's defense against insects is related to the phyllosphere microbiome remains mostly elusive. Here, we investigated bacterial communities in the phyllosphere and endosphere of eight wheat cultivars with differing aphid resistance, grown in the same farmland.</p><p><strong>Results: </strong>The bacterial community in both the phyllosphere and endosphere showed significant differences among most wheat cultivars. The phyllosphere was connected to more complex and stable microbial networks than the endosphere in most wheat cultivars. Moreover, the genera Pantoea, Massilia, and Pseudomonas were found to play a major role in shaping the microbial community in the wheat phyllosphere. Additionally, wheat plants showed phenotype-specific associations with the genera Massilia and Pseudomonas. The abundance of the genus Exiguobacterium in the phyllosphere exhibited a significant negative correlation with the aphid hazard grade in the wheat plants.</p><p><strong>Conclusion: </strong>Communities of leaf-associated microbes in wheat plants were mainly driven by the host genotype. Members of the genus Exiguobacterium may have adverse effects on wheat aphids. Our findings provide new clues supporting the development of aphid control strategies based on phyllosphere microbiome engineering.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-023-00534-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-023-00534-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:叶片相关微生物在植物发育和对外源胁迫的反应中发挥着重要作用。众所周知,昆虫食草动物会改变叶层微生物组。然而,寄主植物对昆虫的防御是否与叶层微生物组有关,目前仍不清楚。在这里,我们调查了生长在同一农田中的八个不同抗蚜性的小麦品种的叶层和内层中的细菌群落。结果:大多数小麦品种叶层和内层细菌群落存在显著差异。在大多数小麦品种中,叶圈与比内圈更复杂、更稳定的微生物网络相连。此外,Pantoea属、Massilia属和假单胞菌属在小麦叶层微生物群落的形成中发挥着重要作用。此外,小麦植株表现出和Massilia属和假单胞菌属的表型特异性关联。小麦叶层中Exiguobacterium属的丰度与蚜虫危害程度呈显著负相关。结论:小麦叶片相关微生物群落主要由寄主基因型驱动。Exiguobacterium属的成员可能对麦蚜产生不利影响。我们的发现为开发基于叶际微生物组工程的蚜虫控制策略提供了新的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of phyllosphere microbiomes in wheat varieties with differing aphid resistance.

Background: Leaf-associated microbes play an important role in plant development and response to exogenous stress. Insect herbivores are known to alter the phyllosphere microbiome. However, whether the host plant's defense against insects is related to the phyllosphere microbiome remains mostly elusive. Here, we investigated bacterial communities in the phyllosphere and endosphere of eight wheat cultivars with differing aphid resistance, grown in the same farmland.

Results: The bacterial community in both the phyllosphere and endosphere showed significant differences among most wheat cultivars. The phyllosphere was connected to more complex and stable microbial networks than the endosphere in most wheat cultivars. Moreover, the genera Pantoea, Massilia, and Pseudomonas were found to play a major role in shaping the microbial community in the wheat phyllosphere. Additionally, wheat plants showed phenotype-specific associations with the genera Massilia and Pseudomonas. The abundance of the genus Exiguobacterium in the phyllosphere exhibited a significant negative correlation with the aphid hazard grade in the wheat plants.

Conclusion: Communities of leaf-associated microbes in wheat plants were mainly driven by the host genotype. Members of the genus Exiguobacterium may have adverse effects on wheat aphids. Our findings provide new clues supporting the development of aphid control strategies based on phyllosphere microbiome engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信