光遗传哺乳动物细胞培养圆柱形生物反应器中光传播的计算评价。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Shiaki A. Minami, Shruthi S. Garimella, Priya S. Shah
{"title":"光遗传哺乳动物细胞培养圆柱形生物反应器中光传播的计算评价。","authors":"Shiaki A. Minami,&nbsp;Shruthi S. Garimella,&nbsp;Priya S. Shah","doi":"10.1002/biot.202300071","DOIUrl":null,"url":null,"abstract":"<p>Light-inducible regulation of cellular pathways and gene circuits in mammalian cells is a new frontier in mammalian genetic engineering. Optogenetic mammalian cell cultures, which are light-sensitive engineered cells, utilize light to regulate gene expression and protein activity. As a low-cost, tunable, and reversible input, light is highly adept at spatiotemporal and orthogonal regulation of cellular behavior. However, light is absorbed and scattered as it travels through media and cells, and the applicability of optogenetics in larger mammalian bioreactors has not been determined. In this work, we computationally explore the size limit to which optogenetics can be applied in cylindrical bioreactors at relevant height-to-diameter ratios. We model the propagation of light using the radiative transfer equation and consider changes in reactor volume, absorption coefficient, scattering coefficient, and scattering anisotropy. We observe sufficient light penetration for activation in simulated bioreactors with sizes of up to 80,000 L at maximal cell densities. We performed supporting experiments and found that significant attenuation occurs at the boundaries of the system, but the relative change in intensity distribution within the reactor was consistent with simulation results. We conclude that optogenetics can be applied to bioreactors at an industrial scale and may be a valuable tool for specific biomanufacturing applications.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202300071","citationCount":"0","resultStr":"{\"title\":\"Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures\",\"authors\":\"Shiaki A. Minami,&nbsp;Shruthi S. Garimella,&nbsp;Priya S. Shah\",\"doi\":\"10.1002/biot.202300071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Light-inducible regulation of cellular pathways and gene circuits in mammalian cells is a new frontier in mammalian genetic engineering. Optogenetic mammalian cell cultures, which are light-sensitive engineered cells, utilize light to regulate gene expression and protein activity. As a low-cost, tunable, and reversible input, light is highly adept at spatiotemporal and orthogonal regulation of cellular behavior. However, light is absorbed and scattered as it travels through media and cells, and the applicability of optogenetics in larger mammalian bioreactors has not been determined. In this work, we computationally explore the size limit to which optogenetics can be applied in cylindrical bioreactors at relevant height-to-diameter ratios. We model the propagation of light using the radiative transfer equation and consider changes in reactor volume, absorption coefficient, scattering coefficient, and scattering anisotropy. We observe sufficient light penetration for activation in simulated bioreactors with sizes of up to 80,000 L at maximal cell densities. We performed supporting experiments and found that significant attenuation occurs at the boundaries of the system, but the relative change in intensity distribution within the reactor was consistent with simulation results. We conclude that optogenetics can be applied to bioreactors at an industrial scale and may be a valuable tool for specific biomanufacturing applications.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202300071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202300071\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202300071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

光诱导调节哺乳动物细胞中的细胞通路和基因回路是哺乳动物基因工程的一个新前沿。光遗传学哺乳动物细胞培养物是一种光敏工程细胞,利用光来调节基因表达和蛋白质活性。作为一种低成本、可调谐和可逆的输入,光非常擅长细胞行为的时空和正交调节。然而,光在穿过培养基和细胞时会被吸收和散射,光遗传学在大型哺乳动物生物反应器中的适用性尚未确定。在这项工作中,我们通过计算探索了光遗传学在哺乳动物细胞培养的相关高径比下可应用于圆柱形生物反应器的尺寸限制。我们使用辐射传输方程对光的传播进行建模,并考虑反应器体积、吸收系数、散射系数和散射各向异性的变化。我们观察到,在最大细胞密度下,在高达80000 L的生物反应器中,有足够的光穿透进行活化,而在更大的生物反应剂中,效率降低。对于100000 L的生物反应器,我们确定可以支持高达1.5107个细胞/mL的较低细胞密度。我们得出的结论是,光遗传学可以应用于工业规模的生物反应器,并且可能是特定生物制造应用的宝贵工具。这篇文章受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures

Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures

Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures

Light-inducible regulation of cellular pathways and gene circuits in mammalian cells is a new frontier in mammalian genetic engineering. Optogenetic mammalian cell cultures, which are light-sensitive engineered cells, utilize light to regulate gene expression and protein activity. As a low-cost, tunable, and reversible input, light is highly adept at spatiotemporal and orthogonal regulation of cellular behavior. However, light is absorbed and scattered as it travels through media and cells, and the applicability of optogenetics in larger mammalian bioreactors has not been determined. In this work, we computationally explore the size limit to which optogenetics can be applied in cylindrical bioreactors at relevant height-to-diameter ratios. We model the propagation of light using the radiative transfer equation and consider changes in reactor volume, absorption coefficient, scattering coefficient, and scattering anisotropy. We observe sufficient light penetration for activation in simulated bioreactors with sizes of up to 80,000 L at maximal cell densities. We performed supporting experiments and found that significant attenuation occurs at the boundaries of the system, but the relative change in intensity distribution within the reactor was consistent with simulation results. We conclude that optogenetics can be applied to bioreactors at an industrial scale and may be a valuable tool for specific biomanufacturing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信