Caitlin M. Berry, William Kleiber, Bri-Mathias Hodge
{"title":"太阳辐照度的隶属高斯过程","authors":"Caitlin M. Berry, William Kleiber, Bri-Mathias Hodge","doi":"10.1002/env.2800","DOIUrl":null,"url":null,"abstract":"<p>Traditionally the power grid has been a one-way street with power flowing from large transmission-connected generators through the distribution network to consumers. This paradigm is changing with the introduction of distributed renewable energy resources (DERs), and with it, the way the grid is managed. There is currently a dearth of high fidelity solar irradiance datasets available to help grid researchers understand how expansion of DERs could affect future power system operations. Realistic simulations of by-the-second solar irradiances are needed to study how DER variability affects the grid. Irradiance data are highly non-stationary and non-Gaussian, and even modern time series models are challenged by their distributional properties. We develop a subordinated non-Gaussian stochastic model whose simulations realistically capture the distribution and dependence structure in measured irradiance. We illustrate our approach on a fine resolution dataset from Hawaii, where our approach outperforms standard nonlinear time series models.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subordinated Gaussian processes for solar irradiance\",\"authors\":\"Caitlin M. Berry, William Kleiber, Bri-Mathias Hodge\",\"doi\":\"10.1002/env.2800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditionally the power grid has been a one-way street with power flowing from large transmission-connected generators through the distribution network to consumers. This paradigm is changing with the introduction of distributed renewable energy resources (DERs), and with it, the way the grid is managed. There is currently a dearth of high fidelity solar irradiance datasets available to help grid researchers understand how expansion of DERs could affect future power system operations. Realistic simulations of by-the-second solar irradiances are needed to study how DER variability affects the grid. Irradiance data are highly non-stationary and non-Gaussian, and even modern time series models are challenged by their distributional properties. We develop a subordinated non-Gaussian stochastic model whose simulations realistically capture the distribution and dependence structure in measured irradiance. We illustrate our approach on a fine resolution dataset from Hawaii, where our approach outperforms standard nonlinear time series models.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2800\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2800","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Subordinated Gaussian processes for solar irradiance
Traditionally the power grid has been a one-way street with power flowing from large transmission-connected generators through the distribution network to consumers. This paradigm is changing with the introduction of distributed renewable energy resources (DERs), and with it, the way the grid is managed. There is currently a dearth of high fidelity solar irradiance datasets available to help grid researchers understand how expansion of DERs could affect future power system operations. Realistic simulations of by-the-second solar irradiances are needed to study how DER variability affects the grid. Irradiance data are highly non-stationary and non-Gaussian, and even modern time series models are challenged by their distributional properties. We develop a subordinated non-Gaussian stochastic model whose simulations realistically capture the distribution and dependence structure in measured irradiance. We illustrate our approach on a fine resolution dataset from Hawaii, where our approach outperforms standard nonlinear time series models.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.