Anja Hrovatič, Peter Peer, Vitomir Štruc, Žiga Emeršič
{"title":"使用两层沙漏网络实现高效的耳朵对齐","authors":"Anja Hrovatič, Peter Peer, Vitomir Štruc, Žiga Emeršič","doi":"10.1049/bme2.12109","DOIUrl":null,"url":null,"abstract":"<p>Ear images have been shown to be a reliable modality for biometric recognition with desirable characteristics, such as high universality, distinctiveness, measurability and permanence. While a considerable amount of research has been directed towards ear recognition techniques, the problem of ear alignment is still under-explored in the open literature. Nonetheless, accurate alignment of ear images, especially in unconstrained acquisition scenarios, where the ear appearance is expected to vary widely due to pose and view point variations, is critical for the performance of all downstream tasks, including ear recognition. Here, the authors address this problem and present a framework for ear alignment that relies on a two-step procedure: (i) automatic landmark detection and (ii) fiducial point alignment. For the first (landmark detection) step, the authors implement and train a Two-Stack Hourglass model (2-SHGNet) capable of accurately predicting 55 landmarks on diverse ear images captured in uncontrolled conditions. For the second (alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm to align the estimated landmark/fiducial points with a pre-defined ear shape (i.e. a collection of average ear landmark positions). The authors evaluate the proposed framework in comprehensive experiments on the AWEx and ITWE datasets and show that the 2-SHGNet model leads to more accurate landmark predictions than competing state-of-the-art models from the literature. Furthermore, the authors also demonstrate that the alignment step significantly improves recognition accuracy with ear images from unconstrained environments compared to unaligned imagery.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"77-90"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12109","citationCount":"2","resultStr":"{\"title\":\"Efficient ear alignment using a two-stack hourglass network\",\"authors\":\"Anja Hrovatič, Peter Peer, Vitomir Štruc, Žiga Emeršič\",\"doi\":\"10.1049/bme2.12109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ear images have been shown to be a reliable modality for biometric recognition with desirable characteristics, such as high universality, distinctiveness, measurability and permanence. While a considerable amount of research has been directed towards ear recognition techniques, the problem of ear alignment is still under-explored in the open literature. Nonetheless, accurate alignment of ear images, especially in unconstrained acquisition scenarios, where the ear appearance is expected to vary widely due to pose and view point variations, is critical for the performance of all downstream tasks, including ear recognition. Here, the authors address this problem and present a framework for ear alignment that relies on a two-step procedure: (i) automatic landmark detection and (ii) fiducial point alignment. For the first (landmark detection) step, the authors implement and train a Two-Stack Hourglass model (2-SHGNet) capable of accurately predicting 55 landmarks on diverse ear images captured in uncontrolled conditions. For the second (alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm to align the estimated landmark/fiducial points with a pre-defined ear shape (i.e. a collection of average ear landmark positions). The authors evaluate the proposed framework in comprehensive experiments on the AWEx and ITWE datasets and show that the 2-SHGNet model leads to more accurate landmark predictions than competing state-of-the-art models from the literature. Furthermore, the authors also demonstrate that the alignment step significantly improves recognition accuracy with ear images from unconstrained environments compared to unaligned imagery.</p>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"12 2\",\"pages\":\"77-90\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12109\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12109\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient ear alignment using a two-stack hourglass network
Ear images have been shown to be a reliable modality for biometric recognition with desirable characteristics, such as high universality, distinctiveness, measurability and permanence. While a considerable amount of research has been directed towards ear recognition techniques, the problem of ear alignment is still under-explored in the open literature. Nonetheless, accurate alignment of ear images, especially in unconstrained acquisition scenarios, where the ear appearance is expected to vary widely due to pose and view point variations, is critical for the performance of all downstream tasks, including ear recognition. Here, the authors address this problem and present a framework for ear alignment that relies on a two-step procedure: (i) automatic landmark detection and (ii) fiducial point alignment. For the first (landmark detection) step, the authors implement and train a Two-Stack Hourglass model (2-SHGNet) capable of accurately predicting 55 landmarks on diverse ear images captured in uncontrolled conditions. For the second (alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm to align the estimated landmark/fiducial points with a pre-defined ear shape (i.e. a collection of average ear landmark positions). The authors evaluate the proposed framework in comprehensive experiments on the AWEx and ITWE datasets and show that the 2-SHGNet model leads to more accurate landmark predictions than competing state-of-the-art models from the literature. Furthermore, the authors also demonstrate that the alignment step significantly improves recognition accuracy with ear images from unconstrained environments compared to unaligned imagery.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues