Huailei Jiang, Yan Guo, Hancheng Cai, Nerissa Viola, Anthony Frank Shields, Otto Muzik, Csaba Juhasz
{"title":"用于人类癌症正电子发射断层扫描(PET)成像的1-(2-[18F]氟乙基)-L-色氨酸([18F]FETrp)的自动放射合成","authors":"Huailei Jiang, Yan Guo, Hancheng Cai, Nerissa Viola, Anthony Frank Shields, Otto Muzik, Csaba Juhasz","doi":"10.1002/jlcr.4027","DOIUrl":null,"url":null,"abstract":"<p>The radiotracer 1-(2-[<sup>18</sup>F]fluoroethyl)-L-tryptophan (L-[<sup>18</sup>F]FETrp or [<sup>18</sup>F]FETrp) is a substrate of indoleamine 2,3-dioxygenase, the initial and key enzyme of the kynurenine pathway associated with tumoral immune resistance. In preclinical positron emission tomography studies, [<sup>18</sup>F]FETrp is highly accumulated in a wide range of primary and metastatic cancers, such as lung cancer, prostate cancer, and gliomas. However, the clinical translation of this radiotracer into the first-in-human trial has not been reported, partially due to its racemization during radiofluorination which renders the purification of the final product challenging. However, efficient purification is essential for human studies in order to assure radiochemical and enantiomeric purity. In this work, we report a fully automated radiosynthesis of [<sup>18</sup>F]FETrp on a Synthra RNPlus research module, including a one-pot two steps radiosynthesis, dual independent chiral and reverse-phase semipreparative high-performance liquid chromatography purifications, and solid-phase extraction-assisted formulation. The presented approach has led to its Investigational New Drug application and approval that allows the testing of this tracer in humans.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"66 7-8","pages":"180-188"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated radiosynthesis of 1-(2-[18F]fluoroethyl)-L-tryptophan ([18F]FETrp) for positron emission tomography (PET) imaging of cancer in humans\",\"authors\":\"Huailei Jiang, Yan Guo, Hancheng Cai, Nerissa Viola, Anthony Frank Shields, Otto Muzik, Csaba Juhasz\",\"doi\":\"10.1002/jlcr.4027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The radiotracer 1-(2-[<sup>18</sup>F]fluoroethyl)-L-tryptophan (L-[<sup>18</sup>F]FETrp or [<sup>18</sup>F]FETrp) is a substrate of indoleamine 2,3-dioxygenase, the initial and key enzyme of the kynurenine pathway associated with tumoral immune resistance. In preclinical positron emission tomography studies, [<sup>18</sup>F]FETrp is highly accumulated in a wide range of primary and metastatic cancers, such as lung cancer, prostate cancer, and gliomas. However, the clinical translation of this radiotracer into the first-in-human trial has not been reported, partially due to its racemization during radiofluorination which renders the purification of the final product challenging. However, efficient purification is essential for human studies in order to assure radiochemical and enantiomeric purity. In this work, we report a fully automated radiosynthesis of [<sup>18</sup>F]FETrp on a Synthra RNPlus research module, including a one-pot two steps radiosynthesis, dual independent chiral and reverse-phase semipreparative high-performance liquid chromatography purifications, and solid-phase extraction-assisted formulation. The presented approach has led to its Investigational New Drug application and approval that allows the testing of this tracer in humans.</p>\",\"PeriodicalId\":16288,\"journal\":{\"name\":\"Journal of labelled compounds & radiopharmaceuticals\",\"volume\":\"66 7-8\",\"pages\":\"180-188\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of labelled compounds & radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4027\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4027","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Automated radiosynthesis of 1-(2-[18F]fluoroethyl)-L-tryptophan ([18F]FETrp) for positron emission tomography (PET) imaging of cancer in humans
The radiotracer 1-(2-[18F]fluoroethyl)-L-tryptophan (L-[18F]FETrp or [18F]FETrp) is a substrate of indoleamine 2,3-dioxygenase, the initial and key enzyme of the kynurenine pathway associated with tumoral immune resistance. In preclinical positron emission tomography studies, [18F]FETrp is highly accumulated in a wide range of primary and metastatic cancers, such as lung cancer, prostate cancer, and gliomas. However, the clinical translation of this radiotracer into the first-in-human trial has not been reported, partially due to its racemization during radiofluorination which renders the purification of the final product challenging. However, efficient purification is essential for human studies in order to assure radiochemical and enantiomeric purity. In this work, we report a fully automated radiosynthesis of [18F]FETrp on a Synthra RNPlus research module, including a one-pot two steps radiosynthesis, dual independent chiral and reverse-phase semipreparative high-performance liquid chromatography purifications, and solid-phase extraction-assisted formulation. The presented approach has led to its Investigational New Drug application and approval that allows the testing of this tracer in humans.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.