Luke Durell, J. Thad Scott, Douglas Nychka, Amanda S. Hering
{"title":"高频垂直湖泊剖面中溶解氧的函数预测","authors":"Luke Durell, J. Thad Scott, Douglas Nychka, Amanda S. Hering","doi":"10.1002/env.2765","DOIUrl":null,"url":null,"abstract":"<p>Predicting dissolved oxygen (DO) in lakes is important for assessing environmental conditions as well as reducing water treatment costs. High levels of DO often precede toxic algal blooms, and low DO causes carcinogenic metals to precipitate during water treatment. Typically, DO is predicted from limited data sets using hydrodynamic modeling or data-driven approaches like neural networks. However, functional data analysis (FDA) is also an appropriate modeling paradigm for measurements of DO taken vertically through the water column. In this analysis, we build FDA models for a set of profiles measured every 2 hours and forecast the entire DO percent saturation profile from 2 to 24 hours ahead. Functional smoothing and functional principal component analysis are applied first, followed by a vector autoregressive model to forecast the empirical functional principal component (FPC) scores. Rolling training windows adapt to seasonality, and multiple combinations of window sizes, model variables, and parameter specifications are compared using both functional and direct root mean squared error metrics. The FPC method outperforms a suite of comparison models, and including functional pH, temperature, and conductivity variables improves the longer forecasts. Finally, the FDA approach is useful for identifying unusual observations.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2765","citationCount":"3","resultStr":"{\"title\":\"Functional forecasting of dissolved oxygen in high-frequency vertical lake profiles\",\"authors\":\"Luke Durell, J. Thad Scott, Douglas Nychka, Amanda S. Hering\",\"doi\":\"10.1002/env.2765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting dissolved oxygen (DO) in lakes is important for assessing environmental conditions as well as reducing water treatment costs. High levels of DO often precede toxic algal blooms, and low DO causes carcinogenic metals to precipitate during water treatment. Typically, DO is predicted from limited data sets using hydrodynamic modeling or data-driven approaches like neural networks. However, functional data analysis (FDA) is also an appropriate modeling paradigm for measurements of DO taken vertically through the water column. In this analysis, we build FDA models for a set of profiles measured every 2 hours and forecast the entire DO percent saturation profile from 2 to 24 hours ahead. Functional smoothing and functional principal component analysis are applied first, followed by a vector autoregressive model to forecast the empirical functional principal component (FPC) scores. Rolling training windows adapt to seasonality, and multiple combinations of window sizes, model variables, and parameter specifications are compared using both functional and direct root mean squared error metrics. The FPC method outperforms a suite of comparison models, and including functional pH, temperature, and conductivity variables improves the longer forecasts. Finally, the FDA approach is useful for identifying unusual observations.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2765\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2765\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2765","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Functional forecasting of dissolved oxygen in high-frequency vertical lake profiles
Predicting dissolved oxygen (DO) in lakes is important for assessing environmental conditions as well as reducing water treatment costs. High levels of DO often precede toxic algal blooms, and low DO causes carcinogenic metals to precipitate during water treatment. Typically, DO is predicted from limited data sets using hydrodynamic modeling or data-driven approaches like neural networks. However, functional data analysis (FDA) is also an appropriate modeling paradigm for measurements of DO taken vertically through the water column. In this analysis, we build FDA models for a set of profiles measured every 2 hours and forecast the entire DO percent saturation profile from 2 to 24 hours ahead. Functional smoothing and functional principal component analysis are applied first, followed by a vector autoregressive model to forecast the empirical functional principal component (FPC) scores. Rolling training windows adapt to seasonality, and multiple combinations of window sizes, model variables, and parameter specifications are compared using both functional and direct root mean squared error metrics. The FPC method outperforms a suite of comparison models, and including functional pH, temperature, and conductivity variables improves the longer forecasts. Finally, the FDA approach is useful for identifying unusual observations.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.