Mevin B. Hooten, Michael R. Schwob, Devin S. Johnson, Jacob S. Ivan
{"title":"多阶段分层捕获-重新捕获模型","authors":"Mevin B. Hooten, Michael R. Schwob, Devin S. Johnson, Jacob S. Ivan","doi":"10.1002/env.2799","DOIUrl":null,"url":null,"abstract":"<p>Ecologists increasingly rely on Bayesian methods to fit capture–recapture models. Capture–recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for such models, including integrated likelihood, parameter-expanded data augmentation, and combinations of those. Capture–recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture–recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two datasets resulting from capture–recapture studies of different species.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multistage hierarchical capture–recapture models\",\"authors\":\"Mevin B. Hooten, Michael R. Schwob, Devin S. Johnson, Jacob S. Ivan\",\"doi\":\"10.1002/env.2799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecologists increasingly rely on Bayesian methods to fit capture–recapture models. Capture–recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for such models, including integrated likelihood, parameter-expanded data augmentation, and combinations of those. Capture–recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture–recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two datasets resulting from capture–recapture studies of different species.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2799\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2799","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ecologists increasingly rely on Bayesian methods to fit capture–recapture models. Capture–recapture models are used to estimate abundance while accounting for imperfect detectability in individual-level data. A variety of implementations exist for such models, including integrated likelihood, parameter-expanded data augmentation, and combinations of those. Capture–recapture models with latent random effects can be computationally intensive to fit using conventional Bayesian algorithms. We identify alternative specifications of capture–recapture models by considering a conditional representation of the model structure. The resulting alternative model can be specified in a way that leads to more stable computation and allows us to fit the desired model in stages while leveraging parallel computing resources. Our model specification includes a component for the capture history of detected individuals and another component for the sample size which is random before observed. We demonstrate this approach using three examples including simulation and two datasets resulting from capture–recapture studies of different species.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.