{"title":"基于非线性模型预测控制的四旋翼机动平台着陆控制方法","authors":"Bingtao Zhu, BingJun Zhang, Quanbo Ge","doi":"10.1049/ccs2.12081","DOIUrl":null,"url":null,"abstract":"<p>To address the problems that the UAV (Unmanned Aerial Vehicle) is vulnerable to distance limitation and environmental interference when tracking and landing on a moving platform autonomously, the accuracy of position estimation relying only on visual odometry in the point-featureless environment is insufficient, and the traditional linear path planning solvers and controllers cannot meet the fast and safe requirements under the non-linear strong coupling characteristics of the cooperative landing system, an nonlinear model predictive control (NMPC)-based multi-sensor fusion method for autonomous landing of UAVs on motion platforms is proposed. The UAV combines the position information obtained by the RTK-GPS and the image information obtained by the camera and uses the special identification codes placed in the landing area of the UAV to carry out cooperative planning and navigation while using UKF (Unscented Kalman Filter) to estimate the position of the moving platform and using the interference-resistant NMPC algorithm to optimise the UAV tracking trajectory based on the precise positioning of the two platforms to achieve the autonomous landing control of the UAV. The simulation and practical experimental results show the feasibility and effectiveness of the proposed algorithm and the autonomous landing control method and provide an effective solution for the autonomous landing of quadrotors on arbitrarily moving platforms.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12081","citationCount":"0","resultStr":"{\"title\":\"A nonlinear model predictive control based control method to quadrotor landing on moving platform\",\"authors\":\"Bingtao Zhu, BingJun Zhang, Quanbo Ge\",\"doi\":\"10.1049/ccs2.12081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the problems that the UAV (Unmanned Aerial Vehicle) is vulnerable to distance limitation and environmental interference when tracking and landing on a moving platform autonomously, the accuracy of position estimation relying only on visual odometry in the point-featureless environment is insufficient, and the traditional linear path planning solvers and controllers cannot meet the fast and safe requirements under the non-linear strong coupling characteristics of the cooperative landing system, an nonlinear model predictive control (NMPC)-based multi-sensor fusion method for autonomous landing of UAVs on motion platforms is proposed. The UAV combines the position information obtained by the RTK-GPS and the image information obtained by the camera and uses the special identification codes placed in the landing area of the UAV to carry out cooperative planning and navigation while using UKF (Unscented Kalman Filter) to estimate the position of the moving platform and using the interference-resistant NMPC algorithm to optimise the UAV tracking trajectory based on the precise positioning of the two platforms to achieve the autonomous landing control of the UAV. The simulation and practical experimental results show the feasibility and effectiveness of the proposed algorithm and the autonomous landing control method and provide an effective solution for the autonomous landing of quadrotors on arbitrarily moving platforms.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A nonlinear model predictive control based control method to quadrotor landing on moving platform
To address the problems that the UAV (Unmanned Aerial Vehicle) is vulnerable to distance limitation and environmental interference when tracking and landing on a moving platform autonomously, the accuracy of position estimation relying only on visual odometry in the point-featureless environment is insufficient, and the traditional linear path planning solvers and controllers cannot meet the fast and safe requirements under the non-linear strong coupling characteristics of the cooperative landing system, an nonlinear model predictive control (NMPC)-based multi-sensor fusion method for autonomous landing of UAVs on motion platforms is proposed. The UAV combines the position information obtained by the RTK-GPS and the image information obtained by the camera and uses the special identification codes placed in the landing area of the UAV to carry out cooperative planning and navigation while using UKF (Unscented Kalman Filter) to estimate the position of the moving platform and using the interference-resistant NMPC algorithm to optimise the UAV tracking trajectory based on the precise positioning of the two platforms to achieve the autonomous landing control of the UAV. The simulation and practical experimental results show the feasibility and effectiveness of the proposed algorithm and the autonomous landing control method and provide an effective solution for the autonomous landing of quadrotors on arbitrarily moving platforms.