肯尼亚纳库鲁湖水域、沉积物和尼罗罗非鱼中的有机氯农药残留及其对渔业的影响

Q3 Environmental Science
Mary Florence Nantongo, Joseph Edebe, Elick O. Otachi, Julius Kipkemboi
{"title":"肯尼亚纳库鲁湖水域、沉积物和尼罗罗非鱼中的有机氯农药残留及其对渔业的影响","authors":"Mary Florence Nantongo,&nbsp;Joseph Edebe,&nbsp;Elick O. Otachi,&nbsp;Julius Kipkemboi","doi":"10.1111/lre.12424","DOIUrl":null,"url":null,"abstract":"<p>The present study was conducted to assess the levels of selected organochlorine pesticide (OCP) residues in water, sediments and Nile tilapia, as well as the potential health risks to humans who consume the fish of Lake Nakuru. Nine composite water and nine sediment samples, as well as 30 fish specimens, were collected from five representative sampling sites within Lake Nakuru. The OCPs targeted in the present study included p,p′-Dichlorodiphenyl dichloroethane (p,p′-DDD), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), heptachlor, heptachlor epoxide, α endosulfan (1), β endosulfan (2), endosulfan sulphate, endrin, lindane, aldrin, dieldrin, methoxychlor and hexachlorocyclohexanes (alpha; beta; gamma; delta). Except for aldrin, all 16 OCPs targeted in the present study were detected. The OCP residue levels ranged from below detection limit (BDL) to 7.44 ± 0.66 μg/L, BDL to 6.39 ± 1.10 μg/kg ww and BDL to 319.74 ± 66.94 μg/kg ww in water, sediment and fish samples respectively. Some OCP concentrations exhibited significant differences across the sampling sites (<i>p</i> &lt; .05). The residue level of endosulfan was above the European Union standard, whereas the target hazard quotient of heptachlor epoxide was above 1, therefore being unsafe for human consumption. The present study results indicate that most of organochlorine pesticides though banned in Kenya are still detected in the environment, posing potential long-term health hazards to humans. Accordingly, environmental monitoring programme and mitigation strategies of reducing pollutant inputs into the lake is recommended, as well as an immediate ban on harvesting and consumption of fish from Lake Nakuru.</p>","PeriodicalId":39473,"journal":{"name":"Lakes and Reservoirs: Research and Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organochlorine pesticide residues in water, sediments and Nile tilapia (Oreochromis niloticus) of Lake Nakuru, Kenya and implications for its fishery\",\"authors\":\"Mary Florence Nantongo,&nbsp;Joseph Edebe,&nbsp;Elick O. Otachi,&nbsp;Julius Kipkemboi\",\"doi\":\"10.1111/lre.12424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study was conducted to assess the levels of selected organochlorine pesticide (OCP) residues in water, sediments and Nile tilapia, as well as the potential health risks to humans who consume the fish of Lake Nakuru. Nine composite water and nine sediment samples, as well as 30 fish specimens, were collected from five representative sampling sites within Lake Nakuru. The OCPs targeted in the present study included p,p′-Dichlorodiphenyl dichloroethane (p,p′-DDD), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), heptachlor, heptachlor epoxide, α endosulfan (1), β endosulfan (2), endosulfan sulphate, endrin, lindane, aldrin, dieldrin, methoxychlor and hexachlorocyclohexanes (alpha; beta; gamma; delta). Except for aldrin, all 16 OCPs targeted in the present study were detected. The OCP residue levels ranged from below detection limit (BDL) to 7.44 ± 0.66 μg/L, BDL to 6.39 ± 1.10 μg/kg ww and BDL to 319.74 ± 66.94 μg/kg ww in water, sediment and fish samples respectively. Some OCP concentrations exhibited significant differences across the sampling sites (<i>p</i> &lt; .05). The residue level of endosulfan was above the European Union standard, whereas the target hazard quotient of heptachlor epoxide was above 1, therefore being unsafe for human consumption. The present study results indicate that most of organochlorine pesticides though banned in Kenya are still detected in the environment, posing potential long-term health hazards to humans. Accordingly, environmental monitoring programme and mitigation strategies of reducing pollutant inputs into the lake is recommended, as well as an immediate ban on harvesting and consumption of fish from Lake Nakuru.</p>\",\"PeriodicalId\":39473,\"journal\":{\"name\":\"Lakes and Reservoirs: Research and Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lakes and Reservoirs: Research and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/lre.12424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lakes and Reservoirs: Research and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/lre.12424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估水中、沉积物和尼罗罗非鱼中选定的有机氯农药(OCP)残留水平,以及对食用纳库鲁湖鱼类的人类的潜在健康风险。从纳库鲁湖的五个代表性采样点采集了九个复合水和九个沉积物样本,以及30个鱼类样本。本研究针对的OCP包括对,对′-二氯二苯二氯乙烷(p,p′-DDD)、对,对二氯二苯基二氯乙烯(p,p′-DDE),甲氧基氯和六氯环己烷(α;β;γ;δ)。除艾氏剂外,本研究中靶向的所有16种OCP均被检测到。OCP残留水平从低于检测限(BDL)到7.44 ± 0.66 μg/L,BDL至6.39 ± 1.10μg/kg ww和BDL至319.74 ± 66.94 水、沉积物和鱼类样品中的ww分别为μg/kg。一些OCP浓度在不同采样点之间表现出显著差异(p <; .05)。硫丹的残留量高于欧洲联盟标准,而环氧七氯的目标危险系数高于1,因此对人类消费不安全。目前的研究结果表明,尽管肯尼亚禁止使用有机氯农药,但大多数有机氯农药仍在环境中被检测到,对人类健康构成潜在的长期危害。因此,建议制定环境监测计划和减少向该湖输入污染物的缓解战略,并立即禁止从纳库鲁湖捕捞和消费鱼类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organochlorine pesticide residues in water, sediments and Nile tilapia (Oreochromis niloticus) of Lake Nakuru, Kenya and implications for its fishery

The present study was conducted to assess the levels of selected organochlorine pesticide (OCP) residues in water, sediments and Nile tilapia, as well as the potential health risks to humans who consume the fish of Lake Nakuru. Nine composite water and nine sediment samples, as well as 30 fish specimens, were collected from five representative sampling sites within Lake Nakuru. The OCPs targeted in the present study included p,p′-Dichlorodiphenyl dichloroethane (p,p′-DDD), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), heptachlor, heptachlor epoxide, α endosulfan (1), β endosulfan (2), endosulfan sulphate, endrin, lindane, aldrin, dieldrin, methoxychlor and hexachlorocyclohexanes (alpha; beta; gamma; delta). Except for aldrin, all 16 OCPs targeted in the present study were detected. The OCP residue levels ranged from below detection limit (BDL) to 7.44 ± 0.66 μg/L, BDL to 6.39 ± 1.10 μg/kg ww and BDL to 319.74 ± 66.94 μg/kg ww in water, sediment and fish samples respectively. Some OCP concentrations exhibited significant differences across the sampling sites (p < .05). The residue level of endosulfan was above the European Union standard, whereas the target hazard quotient of heptachlor epoxide was above 1, therefore being unsafe for human consumption. The present study results indicate that most of organochlorine pesticides though banned in Kenya are still detected in the environment, posing potential long-term health hazards to humans. Accordingly, environmental monitoring programme and mitigation strategies of reducing pollutant inputs into the lake is recommended, as well as an immediate ban on harvesting and consumption of fish from Lake Nakuru.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lakes and Reservoirs: Research and Management
Lakes and Reservoirs: Research and Management Environmental Science-Water Science and Technology
CiteScore
2.40
自引率
0.00%
发文量
29
期刊介绍: Lakes & Reservoirs: Research and Management aims to promote environmentally sound management of natural and artificial lakes, consistent with sustainable development policies. This peer-reviewed Journal publishes international research on the management and conservation of lakes and reservoirs to facilitate the international exchange of results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信