Mary Florence Nantongo, Joseph Edebe, Elick O. Otachi, Julius Kipkemboi
{"title":"肯尼亚纳库鲁湖水域、沉积物和尼罗罗非鱼中的有机氯农药残留及其对渔业的影响","authors":"Mary Florence Nantongo, Joseph Edebe, Elick O. Otachi, Julius Kipkemboi","doi":"10.1111/lre.12424","DOIUrl":null,"url":null,"abstract":"<p>The present study was conducted to assess the levels of selected organochlorine pesticide (OCP) residues in water, sediments and Nile tilapia, as well as the potential health risks to humans who consume the fish of Lake Nakuru. Nine composite water and nine sediment samples, as well as 30 fish specimens, were collected from five representative sampling sites within Lake Nakuru. The OCPs targeted in the present study included p,p′-Dichlorodiphenyl dichloroethane (p,p′-DDD), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), heptachlor, heptachlor epoxide, α endosulfan (1), β endosulfan (2), endosulfan sulphate, endrin, lindane, aldrin, dieldrin, methoxychlor and hexachlorocyclohexanes (alpha; beta; gamma; delta). Except for aldrin, all 16 OCPs targeted in the present study were detected. The OCP residue levels ranged from below detection limit (BDL) to 7.44 ± 0.66 μg/L, BDL to 6.39 ± 1.10 μg/kg ww and BDL to 319.74 ± 66.94 μg/kg ww in water, sediment and fish samples respectively. Some OCP concentrations exhibited significant differences across the sampling sites (<i>p</i> < .05). The residue level of endosulfan was above the European Union standard, whereas the target hazard quotient of heptachlor epoxide was above 1, therefore being unsafe for human consumption. The present study results indicate that most of organochlorine pesticides though banned in Kenya are still detected in the environment, posing potential long-term health hazards to humans. Accordingly, environmental monitoring programme and mitigation strategies of reducing pollutant inputs into the lake is recommended, as well as an immediate ban on harvesting and consumption of fish from Lake Nakuru.</p>","PeriodicalId":39473,"journal":{"name":"Lakes and Reservoirs: Research and Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organochlorine pesticide residues in water, sediments and Nile tilapia (Oreochromis niloticus) of Lake Nakuru, Kenya and implications for its fishery\",\"authors\":\"Mary Florence Nantongo, Joseph Edebe, Elick O. Otachi, Julius Kipkemboi\",\"doi\":\"10.1111/lre.12424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study was conducted to assess the levels of selected organochlorine pesticide (OCP) residues in water, sediments and Nile tilapia, as well as the potential health risks to humans who consume the fish of Lake Nakuru. Nine composite water and nine sediment samples, as well as 30 fish specimens, were collected from five representative sampling sites within Lake Nakuru. The OCPs targeted in the present study included p,p′-Dichlorodiphenyl dichloroethane (p,p′-DDD), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), heptachlor, heptachlor epoxide, α endosulfan (1), β endosulfan (2), endosulfan sulphate, endrin, lindane, aldrin, dieldrin, methoxychlor and hexachlorocyclohexanes (alpha; beta; gamma; delta). Except for aldrin, all 16 OCPs targeted in the present study were detected. The OCP residue levels ranged from below detection limit (BDL) to 7.44 ± 0.66 μg/L, BDL to 6.39 ± 1.10 μg/kg ww and BDL to 319.74 ± 66.94 μg/kg ww in water, sediment and fish samples respectively. Some OCP concentrations exhibited significant differences across the sampling sites (<i>p</i> < .05). The residue level of endosulfan was above the European Union standard, whereas the target hazard quotient of heptachlor epoxide was above 1, therefore being unsafe for human consumption. The present study results indicate that most of organochlorine pesticides though banned in Kenya are still detected in the environment, posing potential long-term health hazards to humans. Accordingly, environmental monitoring programme and mitigation strategies of reducing pollutant inputs into the lake is recommended, as well as an immediate ban on harvesting and consumption of fish from Lake Nakuru.</p>\",\"PeriodicalId\":39473,\"journal\":{\"name\":\"Lakes and Reservoirs: Research and Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lakes and Reservoirs: Research and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/lre.12424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lakes and Reservoirs: Research and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/lre.12424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Organochlorine pesticide residues in water, sediments and Nile tilapia (Oreochromis niloticus) of Lake Nakuru, Kenya and implications for its fishery
The present study was conducted to assess the levels of selected organochlorine pesticide (OCP) residues in water, sediments and Nile tilapia, as well as the potential health risks to humans who consume the fish of Lake Nakuru. Nine composite water and nine sediment samples, as well as 30 fish specimens, were collected from five representative sampling sites within Lake Nakuru. The OCPs targeted in the present study included p,p′-Dichlorodiphenyl dichloroethane (p,p′-DDD), p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), heptachlor, heptachlor epoxide, α endosulfan (1), β endosulfan (2), endosulfan sulphate, endrin, lindane, aldrin, dieldrin, methoxychlor and hexachlorocyclohexanes (alpha; beta; gamma; delta). Except for aldrin, all 16 OCPs targeted in the present study were detected. The OCP residue levels ranged from below detection limit (BDL) to 7.44 ± 0.66 μg/L, BDL to 6.39 ± 1.10 μg/kg ww and BDL to 319.74 ± 66.94 μg/kg ww in water, sediment and fish samples respectively. Some OCP concentrations exhibited significant differences across the sampling sites (p < .05). The residue level of endosulfan was above the European Union standard, whereas the target hazard quotient of heptachlor epoxide was above 1, therefore being unsafe for human consumption. The present study results indicate that most of organochlorine pesticides though banned in Kenya are still detected in the environment, posing potential long-term health hazards to humans. Accordingly, environmental monitoring programme and mitigation strategies of reducing pollutant inputs into the lake is recommended, as well as an immediate ban on harvesting and consumption of fish from Lake Nakuru.
期刊介绍:
Lakes & Reservoirs: Research and Management aims to promote environmentally sound management of natural and artificial lakes, consistent with sustainable development policies. This peer-reviewed Journal publishes international research on the management and conservation of lakes and reservoirs to facilitate the international exchange of results.