Qiang An, Chunmao Yeh, Yaobing Lu, Xuebin Chen, Jian Yang
{"title":"一种用于精确邻近群目标跟踪的时变角度提取方法","authors":"Qiang An, Chunmao Yeh, Yaobing Lu, Xuebin Chen, Jian Yang","doi":"10.1049/sil2.12213","DOIUrl":null,"url":null,"abstract":"<p>In order to improve the detection probability of weak targets, tracking radar using sum and difference beams often adopt the method of long-time coherent integration. However, the multidimensional migration of time-varying targets will lead to the decline of parameter estimation accuracy. To solve this problem, this article proposes a refined angle estimation method for time-varying targets with the traditional sum and difference beam echo model, this method compensates and searches the angle parameters of the targets based on subarray rotation invariant and focus process. In addition, this article also studies the masking problem of highly dynamic proximity group targets detection, and proposes an adaptive weighted LMS-CLEAN based on Least Mean Square criterion, which effectively reduces the influence of masking effect on the parameter estimation accuracy of weak targets. Firstly, the proposed algorithm performs angle search and phase compensation on the pulse compression echo of sum and difference channels based on subarray rotation invariant. Secondly, focus the search matrix, reconstruct the strong target echo, and stripe it from both channels by adaptive weighting. Lastly, repeat the above steps until parameters of all targets are achieved precisely. The proposed two algorithms maintain a very low computational effort while effectively reducing the parameter estimation error, and are highly promising for engineering applications. In order to verify the effectiveness of the proposed algorithm, this article also provides some numerical experiments to compares with two existing algorithms in error performance, anti-noise performance, and computational complexity.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12213","citationCount":"0","resultStr":"{\"title\":\"A time-varying angle extraction method for refined proximity group targets tracking\",\"authors\":\"Qiang An, Chunmao Yeh, Yaobing Lu, Xuebin Chen, Jian Yang\",\"doi\":\"10.1049/sil2.12213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to improve the detection probability of weak targets, tracking radar using sum and difference beams often adopt the method of long-time coherent integration. However, the multidimensional migration of time-varying targets will lead to the decline of parameter estimation accuracy. To solve this problem, this article proposes a refined angle estimation method for time-varying targets with the traditional sum and difference beam echo model, this method compensates and searches the angle parameters of the targets based on subarray rotation invariant and focus process. In addition, this article also studies the masking problem of highly dynamic proximity group targets detection, and proposes an adaptive weighted LMS-CLEAN based on Least Mean Square criterion, which effectively reduces the influence of masking effect on the parameter estimation accuracy of weak targets. Firstly, the proposed algorithm performs angle search and phase compensation on the pulse compression echo of sum and difference channels based on subarray rotation invariant. Secondly, focus the search matrix, reconstruct the strong target echo, and stripe it from both channels by adaptive weighting. Lastly, repeat the above steps until parameters of all targets are achieved precisely. The proposed two algorithms maintain a very low computational effort while effectively reducing the parameter estimation error, and are highly promising for engineering applications. In order to verify the effectiveness of the proposed algorithm, this article also provides some numerical experiments to compares with two existing algorithms in error performance, anti-noise performance, and computational complexity.</p>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12213\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12213\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12213","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A time-varying angle extraction method for refined proximity group targets tracking
In order to improve the detection probability of weak targets, tracking radar using sum and difference beams often adopt the method of long-time coherent integration. However, the multidimensional migration of time-varying targets will lead to the decline of parameter estimation accuracy. To solve this problem, this article proposes a refined angle estimation method for time-varying targets with the traditional sum and difference beam echo model, this method compensates and searches the angle parameters of the targets based on subarray rotation invariant and focus process. In addition, this article also studies the masking problem of highly dynamic proximity group targets detection, and proposes an adaptive weighted LMS-CLEAN based on Least Mean Square criterion, which effectively reduces the influence of masking effect on the parameter estimation accuracy of weak targets. Firstly, the proposed algorithm performs angle search and phase compensation on the pulse compression echo of sum and difference channels based on subarray rotation invariant. Secondly, focus the search matrix, reconstruct the strong target echo, and stripe it from both channels by adaptive weighting. Lastly, repeat the above steps until parameters of all targets are achieved precisely. The proposed two algorithms maintain a very low computational effort while effectively reducing the parameter estimation error, and are highly promising for engineering applications. In order to verify the effectiveness of the proposed algorithm, this article also provides some numerical experiments to compares with two existing algorithms in error performance, anti-noise performance, and computational complexity.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf