Sotiris Catsoulis, Uddalok Sen, Jens H. Walther, Constantine M. Megaridis
{"title":"水滴对润湿性图案编织网的影响","authors":"Sotiris Catsoulis, Uddalok Sen, Jens H. Walther, Constantine M. Megaridis","doi":"10.1002/dro2.53","DOIUrl":null,"url":null,"abstract":"<p>Droplet impact and breakup on meshes are relevant to a number of applications involving filters, textiles, and other spatially inhomogeneous media encountering gas-dispersed liquids. This study presents high-resolution simulation results of mm-size droplets striking wettability-patterned meshes with the goal of (a) replicating prior physical experiments, (b) identifying sensitivities to the initial conditions and wettability of the mesh wires, and (c) studying the fluid-field dynamics when droplets strike such meshes. The insights from the present model may help to advance understanding of droplet atomization on meshes, which depends on a number of parameters that are nontrivial to control in an experimental setting. The analysis is carried out by benchmarking the numerical methods used in a commercial software package for orthogonal droplet impact on a flat smooth surface, followed by a convergence analysis, and finally, simulation of specific experiments and case studies involving wettability-patterned mesh targets. We show that the wettability contrast between the hydrophilic and hydrophobic domains on the mesh as well as the contact angle hysteresis on each side play a critical role in determining whether liquid pinch-off occurs. The three-dimensional computational framework constructed in this work is a step toward predicting the postimpact behavior of droplets that strike woven meshes and other porous inhomogeneous media consisting of materials with different wetting properties.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.53","citationCount":"4","resultStr":"{\"title\":\"Droplet impact on a wettability-patterned woven mesh\",\"authors\":\"Sotiris Catsoulis, Uddalok Sen, Jens H. Walther, Constantine M. Megaridis\",\"doi\":\"10.1002/dro2.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Droplet impact and breakup on meshes are relevant to a number of applications involving filters, textiles, and other spatially inhomogeneous media encountering gas-dispersed liquids. This study presents high-resolution simulation results of mm-size droplets striking wettability-patterned meshes with the goal of (a) replicating prior physical experiments, (b) identifying sensitivities to the initial conditions and wettability of the mesh wires, and (c) studying the fluid-field dynamics when droplets strike such meshes. The insights from the present model may help to advance understanding of droplet atomization on meshes, which depends on a number of parameters that are nontrivial to control in an experimental setting. The analysis is carried out by benchmarking the numerical methods used in a commercial software package for orthogonal droplet impact on a flat smooth surface, followed by a convergence analysis, and finally, simulation of specific experiments and case studies involving wettability-patterned mesh targets. We show that the wettability contrast between the hydrophilic and hydrophobic domains on the mesh as well as the contact angle hysteresis on each side play a critical role in determining whether liquid pinch-off occurs. The three-dimensional computational framework constructed in this work is a step toward predicting the postimpact behavior of droplets that strike woven meshes and other porous inhomogeneous media consisting of materials with different wetting properties.</p>\",\"PeriodicalId\":100381,\"journal\":{\"name\":\"Droplet\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.53\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Droplet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dro2.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Droplet impact on a wettability-patterned woven mesh
Droplet impact and breakup on meshes are relevant to a number of applications involving filters, textiles, and other spatially inhomogeneous media encountering gas-dispersed liquids. This study presents high-resolution simulation results of mm-size droplets striking wettability-patterned meshes with the goal of (a) replicating prior physical experiments, (b) identifying sensitivities to the initial conditions and wettability of the mesh wires, and (c) studying the fluid-field dynamics when droplets strike such meshes. The insights from the present model may help to advance understanding of droplet atomization on meshes, which depends on a number of parameters that are nontrivial to control in an experimental setting. The analysis is carried out by benchmarking the numerical methods used in a commercial software package for orthogonal droplet impact on a flat smooth surface, followed by a convergence analysis, and finally, simulation of specific experiments and case studies involving wettability-patterned mesh targets. We show that the wettability contrast between the hydrophilic and hydrophobic domains on the mesh as well as the contact angle hysteresis on each side play a critical role in determining whether liquid pinch-off occurs. The three-dimensional computational framework constructed in this work is a step toward predicting the postimpact behavior of droplets that strike woven meshes and other porous inhomogeneous media consisting of materials with different wetting properties.