{"title":"利用深度学习从CT图像预测癌症治疗反应","authors":"Shweta Tyagi, Sanjay N. Talbar","doi":"10.1002/ima.22883","DOIUrl":null,"url":null,"abstract":"<p>Lung cancer is the deadliest type of cancer and is one of the most frequently occurring cancers. It is primarily diagnosed in later stages when treatment becomes difficult. For better treatment and higher chances of survival, the treatment response of lung cancer patients needs to be analyzed to check whether the patients are responding to the treatment or not. This analysis can be done with the help of follow-up computed tomography (CT) imaging before and after the treatment. However, manually analyzing the baseline and post-treatment CT scan images of so many lung cancer patients is a tedious task. This study proposes an intuitive approach based on deep learning to analyze lung cancer through CT scan images before and after the treatment. In this approach, we utilized a segmentation network to segment the lung tumor in the follow-up CT images. The segmented tumor is then analyzed to check the treatment effect, as suggested by the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines. The segmentation network combines a vision transformer and a convolutional neural network. The segmentation network is first trained on a public dataset and then fine-tuned on the local dataset to improve the segmentation performance. For this study, we have collected a lung cancer dataset from an Indian hospital. The dataset is divided into two parts dataset I and dataset II. Dataset I consists of 100 CT scans, which we use to fine-tune the proposed segmentation network. Dataset II comprises 220 CT scans of 110 patients, consisting of baseline and post-treatment scans. We use dataset II for testing. We achieved significant performance.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 5","pages":"1577-1592"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting lung cancer treatment response from CT images using deep learning\",\"authors\":\"Shweta Tyagi, Sanjay N. Talbar\",\"doi\":\"10.1002/ima.22883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lung cancer is the deadliest type of cancer and is one of the most frequently occurring cancers. It is primarily diagnosed in later stages when treatment becomes difficult. For better treatment and higher chances of survival, the treatment response of lung cancer patients needs to be analyzed to check whether the patients are responding to the treatment or not. This analysis can be done with the help of follow-up computed tomography (CT) imaging before and after the treatment. However, manually analyzing the baseline and post-treatment CT scan images of so many lung cancer patients is a tedious task. This study proposes an intuitive approach based on deep learning to analyze lung cancer through CT scan images before and after the treatment. In this approach, we utilized a segmentation network to segment the lung tumor in the follow-up CT images. The segmented tumor is then analyzed to check the treatment effect, as suggested by the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines. The segmentation network combines a vision transformer and a convolutional neural network. The segmentation network is first trained on a public dataset and then fine-tuned on the local dataset to improve the segmentation performance. For this study, we have collected a lung cancer dataset from an Indian hospital. The dataset is divided into two parts dataset I and dataset II. Dataset I consists of 100 CT scans, which we use to fine-tune the proposed segmentation network. Dataset II comprises 220 CT scans of 110 patients, consisting of baseline and post-treatment scans. We use dataset II for testing. We achieved significant performance.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"33 5\",\"pages\":\"1577-1592\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.22883\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22883","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Predicting lung cancer treatment response from CT images using deep learning
Lung cancer is the deadliest type of cancer and is one of the most frequently occurring cancers. It is primarily diagnosed in later stages when treatment becomes difficult. For better treatment and higher chances of survival, the treatment response of lung cancer patients needs to be analyzed to check whether the patients are responding to the treatment or not. This analysis can be done with the help of follow-up computed tomography (CT) imaging before and after the treatment. However, manually analyzing the baseline and post-treatment CT scan images of so many lung cancer patients is a tedious task. This study proposes an intuitive approach based on deep learning to analyze lung cancer through CT scan images before and after the treatment. In this approach, we utilized a segmentation network to segment the lung tumor in the follow-up CT images. The segmented tumor is then analyzed to check the treatment effect, as suggested by the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines. The segmentation network combines a vision transformer and a convolutional neural network. The segmentation network is first trained on a public dataset and then fine-tuned on the local dataset to improve the segmentation performance. For this study, we have collected a lung cancer dataset from an Indian hospital. The dataset is divided into two parts dataset I and dataset II. Dataset I consists of 100 CT scans, which we use to fine-tune the proposed segmentation network. Dataset II comprises 220 CT scans of 110 patients, consisting of baseline and post-treatment scans. We use dataset II for testing. We achieved significant performance.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.