量子傅立叶变换电路验证的旋转抽象

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY
Arun Govindankutty, Sudarshan K. Srinivasan, Nimish Mathure
{"title":"量子傅立叶变换电路验证的旋转抽象","authors":"Arun Govindankutty,&nbsp;Sudarshan K. Srinivasan,&nbsp;Nimish Mathure","doi":"10.1049/qtc2.12055","DOIUrl":null,"url":null,"abstract":"<p>With the race to build large-scale quantum computers and efforts to exploit quantum algorithms for efficient problem solving in science and engineering disciplines, the requirement to have efficient and scalable verification methods are of vital importance. A novel formal verification method that is targeted at Quantum Fourier Transform (QFT) circuits is proposed. Quantum Fourier Transform is a fundamental quantum algorithm that forms the basis of many quantum computing applications. The verification method employs abstractions of quantum gates used in QFT that leads to a reduction of the verification problem from Hilbert space to the quantifier free logic of bit-vectors. Very efficient decision procedures are available to reason about bit-vectors. Therefore, this method is able to scale up to the verification of QFT circuits with 10,000 qubits and 50 million quantum gates, providing a meteoric advance in the size of QFT circuits thus far verified using formal verification methods.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 2","pages":"84-92"},"PeriodicalIF":2.5000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12055","citationCount":"0","resultStr":"{\"title\":\"Rotational abstractions for verification of quantum Fourier transform circuits\",\"authors\":\"Arun Govindankutty,&nbsp;Sudarshan K. Srinivasan,&nbsp;Nimish Mathure\",\"doi\":\"10.1049/qtc2.12055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the race to build large-scale quantum computers and efforts to exploit quantum algorithms for efficient problem solving in science and engineering disciplines, the requirement to have efficient and scalable verification methods are of vital importance. A novel formal verification method that is targeted at Quantum Fourier Transform (QFT) circuits is proposed. Quantum Fourier Transform is a fundamental quantum algorithm that forms the basis of many quantum computing applications. The verification method employs abstractions of quantum gates used in QFT that leads to a reduction of the verification problem from Hilbert space to the quantifier free logic of bit-vectors. Very efficient decision procedures are available to reason about bit-vectors. Therefore, this method is able to scale up to the verification of QFT circuits with 10,000 qubits and 50 million quantum gates, providing a meteoric advance in the size of QFT circuits thus far verified using formal verification methods.</p>\",\"PeriodicalId\":100651,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"4 2\",\"pages\":\"84-92\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着建造大规模量子计算机的竞赛以及利用量子算法在科学和工程学科中高效解决问题的努力,对高效和可扩展的验证方法的要求至关重要。针对量子傅立叶变换(QFT)电路,提出了一种新的形式化验证方法。量子傅立叶变换是一种基本的量子算法,它构成了许多量子计算应用的基础。该验证方法采用了QFT中使用的量子门的抽象,从而将验证问题从希尔伯特空间简化为位向量的无量词逻辑。非常有效的决策过程可用于对比特向量进行推理。因此,这种方法能够扩展到具有10000个量子位和5000万个量子门的QFT电路的验证,为迄今为止使用正式验证方法验证的QFT芯片的规模提供了巨大的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rotational abstractions for verification of quantum Fourier transform circuits

Rotational abstractions for verification of quantum Fourier transform circuits

With the race to build large-scale quantum computers and efforts to exploit quantum algorithms for efficient problem solving in science and engineering disciplines, the requirement to have efficient and scalable verification methods are of vital importance. A novel formal verification method that is targeted at Quantum Fourier Transform (QFT) circuits is proposed. Quantum Fourier Transform is a fundamental quantum algorithm that forms the basis of many quantum computing applications. The verification method employs abstractions of quantum gates used in QFT that leads to a reduction of the verification problem from Hilbert space to the quantifier free logic of bit-vectors. Very efficient decision procedures are available to reason about bit-vectors. Therefore, this method is able to scale up to the verification of QFT circuits with 10,000 qubits and 50 million quantum gates, providing a meteoric advance in the size of QFT circuits thus far verified using formal verification methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信