{"title":"Romulus-N和GIFT-COFB的非滥用弹性","authors":"Akiko Inoue, Chun Guo, Kazuhiko Minematsu","doi":"10.1049/ise2.12110","DOIUrl":null,"url":null,"abstract":"<p>Nonce-misuse resilience (NMRL) security of Romulus-N and GIFT-COFB is analysed, the two finalists of NIST Lightweight Cryptography project for standardising lightweight authenticated encryption. NMRL, introduced by Ashur et al. at CRYPTO 2017, is a relaxed security notion from a stronger, nonce-misuse resistance notion. The authors have proved that Romulus-N and GIFT- COFB have nonce-misuse resilience. For Romulus-N, the perfect privacy (NMRL-PRIV) and <i>n</i>/2-bit authenticity (NMRL-AUTH) with graceful degradation with respect to nonce repetition are showed. For GIFT-COFB, <i>n</i>/4-bit security for both NMRL-PRIV and NMRL-AUTH notions is showed.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"468-484"},"PeriodicalIF":1.3000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12110","citationCount":"3","resultStr":"{\"title\":\"Nonce-misuse resilience of Romulus-N and GIFT-COFB\",\"authors\":\"Akiko Inoue, Chun Guo, Kazuhiko Minematsu\",\"doi\":\"10.1049/ise2.12110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonce-misuse resilience (NMRL) security of Romulus-N and GIFT-COFB is analysed, the two finalists of NIST Lightweight Cryptography project for standardising lightweight authenticated encryption. NMRL, introduced by Ashur et al. at CRYPTO 2017, is a relaxed security notion from a stronger, nonce-misuse resistance notion. The authors have proved that Romulus-N and GIFT- COFB have nonce-misuse resilience. For Romulus-N, the perfect privacy (NMRL-PRIV) and <i>n</i>/2-bit authenticity (NMRL-AUTH) with graceful degradation with respect to nonce repetition are showed. For GIFT-COFB, <i>n</i>/4-bit security for both NMRL-PRIV and NMRL-AUTH notions is showed.</p>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"17 3\",\"pages\":\"468-484\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12110\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12110\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Nonce-misuse resilience of Romulus-N and GIFT-COFB
Nonce-misuse resilience (NMRL) security of Romulus-N and GIFT-COFB is analysed, the two finalists of NIST Lightweight Cryptography project for standardising lightweight authenticated encryption. NMRL, introduced by Ashur et al. at CRYPTO 2017, is a relaxed security notion from a stronger, nonce-misuse resistance notion. The authors have proved that Romulus-N and GIFT- COFB have nonce-misuse resilience. For Romulus-N, the perfect privacy (NMRL-PRIV) and n/2-bit authenticity (NMRL-AUTH) with graceful degradation with respect to nonce repetition are showed. For GIFT-COFB, n/4-bit security for both NMRL-PRIV and NMRL-AUTH notions is showed.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf