有效内积自变量及其在区间证明中的应用

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zibo Zhou, Zongyang Zhang, Hongyu Tao, Tianyu Li, Boyu Zhao
{"title":"有效内积自变量及其在区间证明中的应用","authors":"Zibo Zhou,&nbsp;Zongyang Zhang,&nbsp;Hongyu Tao,&nbsp;Tianyu Li,&nbsp;Boyu Zhao","doi":"10.1049/ise2.12111","DOIUrl":null,"url":null,"abstract":"<p>Inner product arguments allow a prover to prove that the inner product of two committed vectors equals a public scalar. They are used to reduce the complexity of many cryptographic primitives, such as range proofs. Range proofs are deployed in numerous applications to prove that a committed value lies in a certain range. As core building blocks, their complexity largely determines the performance of corresponding applications. In this paper, we have optimised the inner product argument with statement including two vector commitments (IPA<sub>tvc</sub>) and range proof of Daza et al. (PKC’20), the inner product argument with statement including only one vector commitment (IPA<sub>ovc</sub>) of Bünz et al. (S&amp;P′18). For IPA<sub>tvc</sub>, we reduce the concrete communication complexity by 2 log<sub>2</sub><i>n</i> field elements, where <i>n</i> is the vector dimension. For range proofs, we reduce the concrete communication and prover complexities by about 2 log<sub>2</sub><i>m</i> field elements and 11<i>m</i> field multiplications, respectively, where <i>m</i> is the bit length of range. For IPA<sub>ovc</sub>, we exponentially reduce the asymptotic verifier complexity from linear to logarithmic. Due to the asymptotic characteristics, our protocols are highly competitive when the vector dimension or bit length of range is large.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"485-504"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12111","citationCount":"4","resultStr":"{\"title\":\"Efficient inner product arguments and their applications in range proofs\",\"authors\":\"Zibo Zhou,&nbsp;Zongyang Zhang,&nbsp;Hongyu Tao,&nbsp;Tianyu Li,&nbsp;Boyu Zhao\",\"doi\":\"10.1049/ise2.12111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inner product arguments allow a prover to prove that the inner product of two committed vectors equals a public scalar. They are used to reduce the complexity of many cryptographic primitives, such as range proofs. Range proofs are deployed in numerous applications to prove that a committed value lies in a certain range. As core building blocks, their complexity largely determines the performance of corresponding applications. In this paper, we have optimised the inner product argument with statement including two vector commitments (IPA<sub>tvc</sub>) and range proof of Daza et al. (PKC’20), the inner product argument with statement including only one vector commitment (IPA<sub>ovc</sub>) of Bünz et al. (S&amp;P′18). For IPA<sub>tvc</sub>, we reduce the concrete communication complexity by 2 log<sub>2</sub><i>n</i> field elements, where <i>n</i> is the vector dimension. For range proofs, we reduce the concrete communication and prover complexities by about 2 log<sub>2</sub><i>m</i> field elements and 11<i>m</i> field multiplications, respectively, where <i>m</i> is the bit length of range. For IPA<sub>ovc</sub>, we exponentially reduce the asymptotic verifier complexity from linear to logarithmic. Due to the asymptotic characteristics, our protocols are highly competitive when the vector dimension or bit length of range is large.</p>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"17 3\",\"pages\":\"485-504\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12111\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12111\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12111","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

内积自变量允许证明者证明两个提交向量的内积等于公共标量。它们用于降低许多密码原语的复杂性,例如范围证明。范围证明被部署在许多应用程序中,以证明承诺的价值在一定范围内。作为核心构建块,它们的复杂性在很大程度上决定了相应应用程序的性能。在本文中,我们用包括两个向量承诺(IPAtvc)和Daza等人的范围证明的陈述优化了内积论点。(PKC’20),内积论点,其陈述仅包括Bünz等人的一个向量承诺(IPAovc)。(标准普尔′18)。对于IPAtvc,我们将具体通信复杂性降低了2 log2n个场元素,其中n是向量维度。对于范围证明,我们将具体通信和证明器的复杂性降低了约2 log2m字段元素和11m字段乘法,其中m是范围的比特长度。对于IPAovc,我们将渐近验证器的复杂度从线性指数降低到对数。由于渐近特性,当范围的向量维数或比特长度较大时,我们的协议具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient inner product arguments and their applications in range proofs

Efficient inner product arguments and their applications in range proofs

Inner product arguments allow a prover to prove that the inner product of two committed vectors equals a public scalar. They are used to reduce the complexity of many cryptographic primitives, such as range proofs. Range proofs are deployed in numerous applications to prove that a committed value lies in a certain range. As core building blocks, their complexity largely determines the performance of corresponding applications. In this paper, we have optimised the inner product argument with statement including two vector commitments (IPAtvc) and range proof of Daza et al. (PKC’20), the inner product argument with statement including only one vector commitment (IPAovc) of Bünz et al. (S&P′18). For IPAtvc, we reduce the concrete communication complexity by 2 log2n field elements, where n is the vector dimension. For range proofs, we reduce the concrete communication and prover complexities by about 2 log2m field elements and 11m field multiplications, respectively, where m is the bit length of range. For IPAovc, we exponentially reduce the asymptotic verifier complexity from linear to logarithmic. Due to the asymptotic characteristics, our protocols are highly competitive when the vector dimension or bit length of range is large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信