Jiankun Sun, Xiong Luo, Weiping Wang, Yang Gao, Wenbing Zhao
{"title":"基于对称交叉熵学习的深度时间卷积网络的恶意软件鲁棒识别","authors":"Jiankun Sun, Xiong Luo, Weiping Wang, Yang Gao, Wenbing Zhao","doi":"10.1049/sfw2.12137","DOIUrl":null,"url":null,"abstract":"<p>Recent developments in the field of Internet of things (IoT) have aroused growing attention to the security of smart devices. Specifically, there is an increasing number of malicious software (Malware) on IoT systems. Nowadays, researchers have made many efforts concerning supervised machine learning methods to identify malicious attacks. High-quality labels are of great importance for supervised machine learning, but noises widely exist due to the non-deterministic production environment. Therefore, learning from noisy labels is significant for machine learning-enabled Malware identification. In this study, motivated by the symmetric cross entropy with satisfactory noise robustness, the authors propose a robust Malware identification method using temporal convolutional network (TCN). Moreover, word embedding techniques are generally utilised to understand the contextual relationship between the input operation code (opcode) and application programming interface function names. Here, considering the numerous unlabelled samples in real-world intelligent environments, the authors pre-train the TCN model on an unlabelled set using a word embedding method, that is, Word2Vec. In the experiments, the proposed method is compared with several traditional statistical methods and more recent neural networks on a synthetic Malware dataset and a real-world dataset. The performance comparisons demonstrate the better performance and noise robustness of their proposed method, especially that the proposed method can yield the best identification accuracy of 98.75% in real-world scenarios.</p>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"17 4","pages":"392-404"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12137","citationCount":"0","resultStr":"{\"title\":\"Robust Malware identification via deep temporal convolutional network with symmetric cross entropy learning\",\"authors\":\"Jiankun Sun, Xiong Luo, Weiping Wang, Yang Gao, Wenbing Zhao\",\"doi\":\"10.1049/sfw2.12137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent developments in the field of Internet of things (IoT) have aroused growing attention to the security of smart devices. Specifically, there is an increasing number of malicious software (Malware) on IoT systems. Nowadays, researchers have made many efforts concerning supervised machine learning methods to identify malicious attacks. High-quality labels are of great importance for supervised machine learning, but noises widely exist due to the non-deterministic production environment. Therefore, learning from noisy labels is significant for machine learning-enabled Malware identification. In this study, motivated by the symmetric cross entropy with satisfactory noise robustness, the authors propose a robust Malware identification method using temporal convolutional network (TCN). Moreover, word embedding techniques are generally utilised to understand the contextual relationship between the input operation code (opcode) and application programming interface function names. Here, considering the numerous unlabelled samples in real-world intelligent environments, the authors pre-train the TCN model on an unlabelled set using a word embedding method, that is, Word2Vec. In the experiments, the proposed method is compared with several traditional statistical methods and more recent neural networks on a synthetic Malware dataset and a real-world dataset. The performance comparisons demonstrate the better performance and noise robustness of their proposed method, especially that the proposed method can yield the best identification accuracy of 98.75% in real-world scenarios.</p>\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"17 4\",\"pages\":\"392-404\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12137\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12137\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12137","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Robust Malware identification via deep temporal convolutional network with symmetric cross entropy learning
Recent developments in the field of Internet of things (IoT) have aroused growing attention to the security of smart devices. Specifically, there is an increasing number of malicious software (Malware) on IoT systems. Nowadays, researchers have made many efforts concerning supervised machine learning methods to identify malicious attacks. High-quality labels are of great importance for supervised machine learning, but noises widely exist due to the non-deterministic production environment. Therefore, learning from noisy labels is significant for machine learning-enabled Malware identification. In this study, motivated by the symmetric cross entropy with satisfactory noise robustness, the authors propose a robust Malware identification method using temporal convolutional network (TCN). Moreover, word embedding techniques are generally utilised to understand the contextual relationship between the input operation code (opcode) and application programming interface function names. Here, considering the numerous unlabelled samples in real-world intelligent environments, the authors pre-train the TCN model on an unlabelled set using a word embedding method, that is, Word2Vec. In the experiments, the proposed method is compared with several traditional statistical methods and more recent neural networks on a synthetic Malware dataset and a real-world dataset. The performance comparisons demonstrate the better performance and noise robustness of their proposed method, especially that the proposed method can yield the best identification accuracy of 98.75% in real-world scenarios.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf