Meixia Fu, Jiansheng Wu, Qu Wang, Lei Sun, Zhangchao Ma, Chaoyi Zhang, Wanqing Guan, Wei Li, Na Chen, Danshi Wang, Jianquan Wang
{"title":"基于区域的可变形卷积和注意力融合的全卷积网络用于工业物联网中的钢材表面缺陷检测","authors":"Meixia Fu, Jiansheng Wu, Qu Wang, Lei Sun, Zhangchao Ma, Chaoyi Zhang, Wanqing Guan, Wei Li, Na Chen, Danshi Wang, Jianquan Wang","doi":"10.1049/sil2.12208","DOIUrl":null,"url":null,"abstract":"<p>Next-generation 6G networks will fully drive the development of the industrial Internet of Things. Steel surface defect detection as an important application in industrial Internet of Things has recently received increasing attention from the military industry, the aviation industry and other fields, which is closely related to the quality of industrial production products. However, many typical convolutional neural networks-based methods are insensitive to the problem of unclear boundaries. In this article, the authors develop a region-based fully convolutional networks with deformable convolution and attention fusion to adaptively learn salient features for steel surface defect detection. Specifically, deformable convolution is applied into selectively replace the standard convolution in the backbone of the region-based fully convolutional networks, which performs significantly in scenarios with unclear defect boundaries. Moreover, convolutional block attention module is utilised in region proposal network to further enhance detection accuracy. The proposed architecture is demonstrated on two popular steel defect detection benchmarks, including NEU-DET and GC10-DET, which can effectively present the performance of steel surface defect detection by abundant experiments. The mean average precision on two datasets reaches 80.9% and 66.2%. The average precision of defect crazing, inclusion, patches, pitted-surface, rolled-in scale and scratches on NEU-DET is 58.2%, 82.3%, 95.7%, 85.6%, 75.9%, and 87.9% respectively.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12208","citationCount":"3","resultStr":"{\"title\":\"Region-based fully convolutional networks with deformable convolution and attention fusion for steel surface defect detection in industrial Internet of Things\",\"authors\":\"Meixia Fu, Jiansheng Wu, Qu Wang, Lei Sun, Zhangchao Ma, Chaoyi Zhang, Wanqing Guan, Wei Li, Na Chen, Danshi Wang, Jianquan Wang\",\"doi\":\"10.1049/sil2.12208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Next-generation 6G networks will fully drive the development of the industrial Internet of Things. Steel surface defect detection as an important application in industrial Internet of Things has recently received increasing attention from the military industry, the aviation industry and other fields, which is closely related to the quality of industrial production products. However, many typical convolutional neural networks-based methods are insensitive to the problem of unclear boundaries. In this article, the authors develop a region-based fully convolutional networks with deformable convolution and attention fusion to adaptively learn salient features for steel surface defect detection. Specifically, deformable convolution is applied into selectively replace the standard convolution in the backbone of the region-based fully convolutional networks, which performs significantly in scenarios with unclear defect boundaries. Moreover, convolutional block attention module is utilised in region proposal network to further enhance detection accuracy. The proposed architecture is demonstrated on two popular steel defect detection benchmarks, including NEU-DET and GC10-DET, which can effectively present the performance of steel surface defect detection by abundant experiments. The mean average precision on two datasets reaches 80.9% and 66.2%. The average precision of defect crazing, inclusion, patches, pitted-surface, rolled-in scale and scratches on NEU-DET is 58.2%, 82.3%, 95.7%, 85.6%, 75.9%, and 87.9% respectively.</p>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12208\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12208\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12208","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Region-based fully convolutional networks with deformable convolution and attention fusion for steel surface defect detection in industrial Internet of Things
Next-generation 6G networks will fully drive the development of the industrial Internet of Things. Steel surface defect detection as an important application in industrial Internet of Things has recently received increasing attention from the military industry, the aviation industry and other fields, which is closely related to the quality of industrial production products. However, many typical convolutional neural networks-based methods are insensitive to the problem of unclear boundaries. In this article, the authors develop a region-based fully convolutional networks with deformable convolution and attention fusion to adaptively learn salient features for steel surface defect detection. Specifically, deformable convolution is applied into selectively replace the standard convolution in the backbone of the region-based fully convolutional networks, which performs significantly in scenarios with unclear defect boundaries. Moreover, convolutional block attention module is utilised in region proposal network to further enhance detection accuracy. The proposed architecture is demonstrated on two popular steel defect detection benchmarks, including NEU-DET and GC10-DET, which can effectively present the performance of steel surface defect detection by abundant experiments. The mean average precision on two datasets reaches 80.9% and 66.2%. The average precision of defect crazing, inclusion, patches, pitted-surface, rolled-in scale and scratches on NEU-DET is 58.2%, 82.3%, 95.7%, 85.6%, 75.9%, and 87.9% respectively.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf