二阶纯滞后线性微分系统的有限时间稳定性和相对可控性

Pub Date : 2022-11-30 DOI:10.21136/AM.2022.0249-21
Mengmeng Li, Michal Fečkan, JinRong Wang
{"title":"二阶纯滞后线性微分系统的有限时间稳定性和相对可控性","authors":"Mengmeng Li,&nbsp;Michal Fečkan,&nbsp;JinRong Wang","doi":"10.21136/AM.2022.0249-21","DOIUrl":null,"url":null,"abstract":"<div><p>We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite time stability and relative controllability of second order linear differential systems with pure delay\",\"authors\":\"Mengmeng Li,&nbsp;Michal Fečkan,&nbsp;JinRong Wang\",\"doi\":\"10.21136/AM.2022.0249-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2022.0249-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2022.0249-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过给出时滞矩阵函数的一些性质,我们首先考虑了纯时滞二阶线性微分系统的有限时间稳定性。其次,我们给出了检验线性时滞系统是相对可控的充分必要条件。此外,我们应用不动点定理导出了一个相对可控的结果。最后,通过实例说明了主要定理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finite time stability and relative controllability of second order linear differential systems with pure delay

We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信