{"title":"扭曲伴随L-值、二面体同余素数和Bloch–Kato猜想","authors":"Neil Dummigan","doi":"10.1007/s12188-020-00224-w","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a dihedral congruence prime for a normalised Hecke eigenform <i>f</i> in <span>\\(S_k(\\Gamma _0(D),\\chi _D)\\)</span>, where <span>\\(\\chi _D\\)</span> is a real quadratic character, appears in the denominator of the Bloch–Kato conjectural formula for the value at 1 of the twisted adjoint <i>L</i>-function of <i>f</i>. We then use a formula of Zagier to prove that it appears in the denominator of a suitably normalised <span>\\(L(1,{\\mathrm {ad}}^0(g)\\otimes \\chi _D)\\)</span> for <i>some </i> <span>\\(g\\in S_k(\\Gamma _0(D),\\chi _D)\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"90 2","pages":"215 - 227"},"PeriodicalIF":0.4000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00224-w","citationCount":"2","resultStr":"{\"title\":\"Twisted adjoint L-values, dihedral congruence primes and the Bloch–Kato conjecture\",\"authors\":\"Neil Dummigan\",\"doi\":\"10.1007/s12188-020-00224-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that a dihedral congruence prime for a normalised Hecke eigenform <i>f</i> in <span>\\\\(S_k(\\\\Gamma _0(D),\\\\chi _D)\\\\)</span>, where <span>\\\\(\\\\chi _D\\\\)</span> is a real quadratic character, appears in the denominator of the Bloch–Kato conjectural formula for the value at 1 of the twisted adjoint <i>L</i>-function of <i>f</i>. We then use a formula of Zagier to prove that it appears in the denominator of a suitably normalised <span>\\\\(L(1,{\\\\mathrm {ad}}^0(g)\\\\otimes \\\\chi _D)\\\\)</span> for <i>some </i> <span>\\\\(g\\\\in S_k(\\\\Gamma _0(D),\\\\chi _D)\\\\)</span>.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"90 2\",\"pages\":\"215 - 227\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-020-00224-w\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-020-00224-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00224-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Twisted adjoint L-values, dihedral congruence primes and the Bloch–Kato conjecture
We show that a dihedral congruence prime for a normalised Hecke eigenform f in \(S_k(\Gamma _0(D),\chi _D)\), where \(\chi _D\) is a real quadratic character, appears in the denominator of the Bloch–Kato conjectural formula for the value at 1 of the twisted adjoint L-function of f. We then use a formula of Zagier to prove that it appears in the denominator of a suitably normalised \(L(1,{\mathrm {ad}}^0(g)\otimes \chi _D)\) for some \(g\in S_k(\Gamma _0(D),\chi _D)\).
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.