{"title":"空间分数傅立叶域主动声纳目标回波信号增强技术研究","authors":"Yang Yang, Shuo Yang, Yuanming Ding","doi":"10.1007/s40857-021-00244-3","DOIUrl":null,"url":null,"abstract":"<div><p>The detection and recognition of quiet, small objects in shallow water is one of the challenges in underwater acoustic signal processing, especially for buried objects. The seafloor strongly absorbs sound waves, while the object echo signals are weak, which makes the detection of the buried objects more difficult. Realizing object echo signal enhancement in a seafloor reverberation background and improving the signal-to-reverberation ratio (SRR) are critical problems. Based on the difference in energy aggregation between object echo signals and reverberation in the optimal fractional Fourier domain, a blind separation algorithm in the spatial fractional Fourier domain is presented. Expressions of the object rigid scattering components and the reverberation in the fractional Fourier domain are derived, and the energy distribution characteristics of both are analyzed. The objective function is constructed by the generalized correlation matrix of the multiple array signals in the optimal fractional Fourier domain, and the object rigid scattering components are obtained by approximate joint diagonalization. The simulation and data processing results show that the spatial fractional domain blind separation algorithm (FRFTBSS) can improve the signal-to-reverberation ratio. Compared with time–frequency domain blind separation (TFBSS), the proposed algorithm avoids the cross-item interference and performs better at lower SRR.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00244-3","citationCount":"1","resultStr":"{\"title\":\"Research on Active Sonar Object Echo Signal Enhancement Technology in the Spatial Fractional Fourier Domain\",\"authors\":\"Yang Yang, Shuo Yang, Yuanming Ding\",\"doi\":\"10.1007/s40857-021-00244-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The detection and recognition of quiet, small objects in shallow water is one of the challenges in underwater acoustic signal processing, especially for buried objects. The seafloor strongly absorbs sound waves, while the object echo signals are weak, which makes the detection of the buried objects more difficult. Realizing object echo signal enhancement in a seafloor reverberation background and improving the signal-to-reverberation ratio (SRR) are critical problems. Based on the difference in energy aggregation between object echo signals and reverberation in the optimal fractional Fourier domain, a blind separation algorithm in the spatial fractional Fourier domain is presented. Expressions of the object rigid scattering components and the reverberation in the fractional Fourier domain are derived, and the energy distribution characteristics of both are analyzed. The objective function is constructed by the generalized correlation matrix of the multiple array signals in the optimal fractional Fourier domain, and the object rigid scattering components are obtained by approximate joint diagonalization. The simulation and data processing results show that the spatial fractional domain blind separation algorithm (FRFTBSS) can improve the signal-to-reverberation ratio. Compared with time–frequency domain blind separation (TFBSS), the proposed algorithm avoids the cross-item interference and performs better at lower SRR.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40857-021-00244-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-021-00244-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00244-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Active Sonar Object Echo Signal Enhancement Technology in the Spatial Fractional Fourier Domain
The detection and recognition of quiet, small objects in shallow water is one of the challenges in underwater acoustic signal processing, especially for buried objects. The seafloor strongly absorbs sound waves, while the object echo signals are weak, which makes the detection of the buried objects more difficult. Realizing object echo signal enhancement in a seafloor reverberation background and improving the signal-to-reverberation ratio (SRR) are critical problems. Based on the difference in energy aggregation between object echo signals and reverberation in the optimal fractional Fourier domain, a blind separation algorithm in the spatial fractional Fourier domain is presented. Expressions of the object rigid scattering components and the reverberation in the fractional Fourier domain are derived, and the energy distribution characteristics of both are analyzed. The objective function is constructed by the generalized correlation matrix of the multiple array signals in the optimal fractional Fourier domain, and the object rigid scattering components are obtained by approximate joint diagonalization. The simulation and data processing results show that the spatial fractional domain blind separation algorithm (FRFTBSS) can improve the signal-to-reverberation ratio. Compared with time–frequency domain blind separation (TFBSS), the proposed algorithm avoids the cross-item interference and performs better at lower SRR.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.