球面映射和向量丛截面零轨迹的计数不变量

IF 0.4 4区 数学 Q4 MATHEMATICS
Panagiotis Konstantis
{"title":"球面映射和向量丛截面零轨迹的计数不变量","authors":"Panagiotis Konstantis","doi":"10.1007/s12188-020-00228-6","DOIUrl":null,"url":null,"abstract":"<div><p>The set of unrestricted homotopy classes <span>\\([M,S^n]\\)</span> where <i>M</i> is a closed and connected spin <span>\\((n+1)\\)</span>-manifold is called the <i>n</i>-th cohomotopy group <span>\\(\\pi ^n(M)\\)</span> of <i>M</i>. Using homotopy theory it is known that <span>\\(\\pi ^n(M) = H^n(M;{\\mathbb {Z}}) \\oplus {\\mathbb {Z}}_2\\)</span>. We will provide a geometrical description of the <span>\\({\\mathbb {Z}}_2\\)</span> part in <span>\\(\\pi ^n(M)\\)</span> analogous to Pontryagin’s computation of the stable homotopy group <span>\\(\\pi _{n+1}(S^n)\\)</span>. This <span>\\({\\mathbb {Z}}_2\\)</span> number can be computed by counting embedded circles in <i>M</i> with a certain framing of their normal bundle. This is a similar result to the mod 2 degree theorem for maps <span>\\(M \\rightarrow S^{n+1}\\)</span>. Finally we will observe that the zero locus of a section in an oriented rank <i>n</i> vector bundle <span>\\(E \\rightarrow M\\)</span> defines an element in <span>\\(\\pi ^n(M)\\)</span> and it turns out that the <span>\\({\\mathbb {Z}}_2\\)</span> part is an invariant of the isomorphism class of <i>E</i>. At the end we show that if the Euler class of <i>E</i> vanishes this <span>\\({\\mathbb {Z}}_2\\)</span> invariant is the final obstruction to the existence of a nowhere vanishing section.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00228-6","citationCount":"3","resultStr":"{\"title\":\"A counting invariant for maps into spheres and for zero loci of sections of vector bundles\",\"authors\":\"Panagiotis Konstantis\",\"doi\":\"10.1007/s12188-020-00228-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The set of unrestricted homotopy classes <span>\\\\([M,S^n]\\\\)</span> where <i>M</i> is a closed and connected spin <span>\\\\((n+1)\\\\)</span>-manifold is called the <i>n</i>-th cohomotopy group <span>\\\\(\\\\pi ^n(M)\\\\)</span> of <i>M</i>. Using homotopy theory it is known that <span>\\\\(\\\\pi ^n(M) = H^n(M;{\\\\mathbb {Z}}) \\\\oplus {\\\\mathbb {Z}}_2\\\\)</span>. We will provide a geometrical description of the <span>\\\\({\\\\mathbb {Z}}_2\\\\)</span> part in <span>\\\\(\\\\pi ^n(M)\\\\)</span> analogous to Pontryagin’s computation of the stable homotopy group <span>\\\\(\\\\pi _{n+1}(S^n)\\\\)</span>. This <span>\\\\({\\\\mathbb {Z}}_2\\\\)</span> number can be computed by counting embedded circles in <i>M</i> with a certain framing of their normal bundle. This is a similar result to the mod 2 degree theorem for maps <span>\\\\(M \\\\rightarrow S^{n+1}\\\\)</span>. Finally we will observe that the zero locus of a section in an oriented rank <i>n</i> vector bundle <span>\\\\(E \\\\rightarrow M\\\\)</span> defines an element in <span>\\\\(\\\\pi ^n(M)\\\\)</span> and it turns out that the <span>\\\\({\\\\mathbb {Z}}_2\\\\)</span> part is an invariant of the isomorphism class of <i>E</i>. At the end we show that if the Euler class of <i>E</i> vanishes this <span>\\\\({\\\\mathbb {Z}}_2\\\\)</span> invariant is the final obstruction to the existence of a nowhere vanishing section.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-020-00228-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-020-00228-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00228-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

其中M是闭连通的自旋((n+1)-流形的一组不受限制的同伦类\([M,S^n]\)称为M的第n上同调群\(\pi^n(M)\)。使用同伦论,已知\。我们将提供\(\pi^n(M)\)中\({\mathbb{Z}}_2\)部分的几何描述,类似于Pontryagin对稳定同伦群\(\pi_{n+1}(s^n)\)的计算。这个\({\mathbb{Z}}_2\)数可以通过计算M中具有其法丛的特定成帧的嵌入圆来计算。这是一个类似于映射的模2次定理(M\rightarrow S^{n+1}\)的结果。最后,我们将观察到有向秩为n的向量丛(E\rightarrowM\)中截面的零轨迹定义了\(\pi^n(M)\)中的一个元素,并证明\({\mathbb{Z}}_2\)部分是E同构类的不变量。最后,我们证明了如果E的Euler类消失,这个({\mathbb{Z}}_2\)不变量是无处消失区间存在的最后障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A counting invariant for maps into spheres and for zero loci of sections of vector bundles

The set of unrestricted homotopy classes \([M,S^n]\) where M is a closed and connected spin \((n+1)\)-manifold is called the n-th cohomotopy group \(\pi ^n(M)\) of M. Using homotopy theory it is known that \(\pi ^n(M) = H^n(M;{\mathbb {Z}}) \oplus {\mathbb {Z}}_2\). We will provide a geometrical description of the \({\mathbb {Z}}_2\) part in \(\pi ^n(M)\) analogous to Pontryagin’s computation of the stable homotopy group \(\pi _{n+1}(S^n)\). This \({\mathbb {Z}}_2\) number can be computed by counting embedded circles in M with a certain framing of their normal bundle. This is a similar result to the mod 2 degree theorem for maps \(M \rightarrow S^{n+1}\). Finally we will observe that the zero locus of a section in an oriented rank n vector bundle \(E \rightarrow M\) defines an element in \(\pi ^n(M)\) and it turns out that the \({\mathbb {Z}}_2\) part is an invariant of the isomorphism class of E. At the end we show that if the Euler class of E vanishes this \({\mathbb {Z}}_2\) invariant is the final obstruction to the existence of a nowhere vanishing section.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信