有线线性AC\(^0)的正则语言

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Michaël Cadilhac, Charles Paperman
{"title":"有线线性AC\\(^0)的正则语言","authors":"Michaël Cadilhac,&nbsp;Charles Paperman","doi":"10.1007/s00236-022-00432-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the regular languages of wire linear <span>\\(\\hbox {AC}^0\\)</span>are characterized as the languages expressible in the two-variable fragment of first-order logic with regular predicates, <span>\\(\\mathrm{FO}^2[\\mathrm{reg}]\\)</span>. Additionally, they are characterized as the languages recognized by the algebraic class <span>\\(\\mathbf {QLDA}\\)</span>. The class is shown to be decidable and examples of languages in and outside of it are presented.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The regular languages of wire linear AC\\\\(^0\\\\)\",\"authors\":\"Michaël Cadilhac,&nbsp;Charles Paperman\",\"doi\":\"10.1007/s00236-022-00432-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the regular languages of wire linear <span>\\\\(\\\\hbox {AC}^0\\\\)</span>are characterized as the languages expressible in the two-variable fragment of first-order logic with regular predicates, <span>\\\\(\\\\mathrm{FO}^2[\\\\mathrm{reg}]\\\\)</span>. Additionally, they are characterized as the languages recognized by the algebraic class <span>\\\\(\\\\mathbf {QLDA}\\\\)</span>. The class is shown to be decidable and examples of languages in and outside of it are presented.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-022-00432-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-022-00432-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,有线线性\(\hbox{AC}^0)的正则语言被刻画为可在具有正则谓词的一阶逻辑的双变量片段中表达的语言,\(\mathrm{FO}^2[\mathrm{reg}]\)。此外,它们被描述为代数类\(\mathbf{QLDA}\)所识别的语言。该类被证明是可判定的,并给出了类内外语言的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The regular languages of wire linear AC\(^0\)

The regular languages of wire linear AC\(^0\)

In this paper, the regular languages of wire linear \(\hbox {AC}^0\)are characterized as the languages expressible in the two-variable fragment of first-order logic with regular predicates, \(\mathrm{FO}^2[\mathrm{reg}]\). Additionally, they are characterized as the languages recognized by the algebraic class \(\mathbf {QLDA}\). The class is shown to be decidable and examples of languages in and outside of it are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica
Acta Informatica 工程技术-计算机:信息系统
CiteScore
2.40
自引率
16.70%
发文量
24
审稿时长
>12 weeks
期刊介绍: Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics. Topics of interest include: • semantics of programming languages • models and modeling languages for concurrent, distributed, reactive and mobile systems • models and modeling languages for timed, hybrid and probabilistic systems • specification, program analysis and verification • model checking and theorem proving • modal, temporal, first- and higher-order logics, and their variants • constraint logic, SAT/SMT-solving techniques • theoretical aspects of databases, semi-structured data and finite model theory • theoretical aspects of artificial intelligence, knowledge representation, description logic • automata theory, formal languages, term and graph rewriting • game-based models, synthesis • type theory, typed calculi • algebraic, coalgebraic and categorical methods • formal aspects of performance, dependability and reliability analysis • foundations of information and network security • parallel, distributed and randomized algorithms • design and analysis of algorithms • foundations of network and communication protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信