三角lat-igusa-todorov代数

IF 0.4 4区 数学 Q4 MATHEMATICS
José Armando Vivero
{"title":"三角lat-igusa-todorov代数","authors":"José Armando Vivero","doi":"10.1007/s12188-022-00257-3","DOIUrl":null,"url":null,"abstract":"<div><p>In 2021 the authors D. Bravo, M. Lanzilotta, O. Mendoza and J. Vivero gave a generalization of the concept of Igusa-Todorov algebra and proved that those algebras, named Lat-Igusa-Todorov (LIT for short), satisfy the finitistic dimension conjecture. In this paper we explore the scope of that generalization and give conditions for a triangular matrix algebra to be LIT in terms of the algebras and the bimodule used in its definition. As an application we obtain that the tensor product of an LIT <span>\\(\\mathbb {K}\\)</span>-algebra with a path algebra of a quiver whose underlying graph is a tree, is LIT.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Triangular lat-igusa-todorov algebras\",\"authors\":\"José Armando Vivero\",\"doi\":\"10.1007/s12188-022-00257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2021 the authors D. Bravo, M. Lanzilotta, O. Mendoza and J. Vivero gave a generalization of the concept of Igusa-Todorov algebra and proved that those algebras, named Lat-Igusa-Todorov (LIT for short), satisfy the finitistic dimension conjecture. In this paper we explore the scope of that generalization and give conditions for a triangular matrix algebra to be LIT in terms of the algebras and the bimodule used in its definition. As an application we obtain that the tensor product of an LIT <span>\\\\(\\\\mathbb {K}\\\\)</span>-algebra with a path algebra of a quiver whose underlying graph is a tree, is LIT.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-022-00257-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-022-00257-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

2021年,作者D.Bravo、M.Lanzilotta、O.Mendoza和J.Vivero对Igusa-Todorov代数的概念进行了推广,并证明了这些名为Lat-Igusa-Todorov(简称LIT)的代数满足有限维猜想。本文探讨了这种推广的范围,并根据定义中使用的代数和双模,给出了三角矩阵代数为LIT的条件。作为一个应用,我们得到了LIT(\mathbb{K})-代数与基图为树的箭袋的路径代数的张量积是LIT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triangular lat-igusa-todorov algebras

In 2021 the authors D. Bravo, M. Lanzilotta, O. Mendoza and J. Vivero gave a generalization of the concept of Igusa-Todorov algebra and proved that those algebras, named Lat-Igusa-Todorov (LIT for short), satisfy the finitistic dimension conjecture. In this paper we explore the scope of that generalization and give conditions for a triangular matrix algebra to be LIT in terms of the algebras and the bimodule used in its definition. As an application we obtain that the tensor product of an LIT \(\mathbb {K}\)-algebra with a path algebra of a quiver whose underlying graph is a tree, is LIT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信