棱锥二面角和的紧界

Pub Date : 2022-06-21 DOI:10.21136/AM.2022.0010-22
Sergey Korotov, Lars Fredrik Lund, Jon Eivind Vatne
{"title":"棱锥二面角和的紧界","authors":"Sergey Korotov,&nbsp;Lars Fredrik Lund,&nbsp;Jon Eivind Vatne","doi":"10.21136/AM.2022.0010-22","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval (3π, 5π). Moreover, for any number in (3π, 5π) there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound 4π is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2022.0010-22.pdf","citationCount":"0","resultStr":"{\"title\":\"Tight bounds for the dihedral angle sums of a pyramid\",\"authors\":\"Sergey Korotov,&nbsp;Lars Fredrik Lund,&nbsp;Jon Eivind Vatne\",\"doi\":\"10.21136/AM.2022.0010-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval (3π, 5π). Moreover, for any number in (3π, 5π) there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound 4π is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2022.0010-22.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2022.0010-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2022.0010-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有任意四边形底的金字塔中的八个二面角总是在区间(3π,5π)内加一个数。此外,对于(3π,5π)中的任何数,都存在一个二面角和等于该数的金字塔,这意味着下界和上界是紧的。此外,对于具有平行四边形基的一类金字塔,导出了改进的(且严格的)上界4π。这包括具有矩形底部的棱锥体,通常用于有限元网格生成和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tight bounds for the dihedral angle sums of a pyramid

We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval (3π, 5π). Moreover, for any number in (3π, 5π) there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound 4π is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信