{"title":"有限深度水上的全局分岔和最高波","authors":"Vladimir Kozlov, Evgeniy Lokharu","doi":"10.1007/s00205-023-01929-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the two-dimensional problem for steady water waves with vorticity on water of finite depth. While neglecting the effects of surface tension we construct connected families of large amplitude periodic waves approaching a limiting wave, which is either a solitary wave, the highest solitary wave, the highest Stokes wave or a Stokes wave with a breaking profile. In particular, when the vorticity is nonnegative we prove the existence of highest Stokes waves with an included angle of 120<span>\\(^\\circ \\)</span>. In contrast to previous studies, we fix the Bernoulli constant and consider the wavelength as a bifurcation parameter, which guarantees that the limiting wave has a finite depth. In fact, this is the first rigorous proof of the existence of extreme Stokes waves with vorticity on water of finite depth. Aside from the existence of highest waves, we provide a new result about the regularity of Stokes waves of arbitrary amplitude (including extreme waves). Furthermore, we prove several new facts about steady waves, such as a lower bound for the wavelength of Stokes waves, while also eliminating a possibility of the wave breaking for waves with non-negative vorticity.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01929-x.pdf","citationCount":"9","resultStr":"{\"title\":\"Global Bifurcation and Highest Waves on Water of Finite Depth\",\"authors\":\"Vladimir Kozlov, Evgeniy Lokharu\",\"doi\":\"10.1007/s00205-023-01929-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the two-dimensional problem for steady water waves with vorticity on water of finite depth. While neglecting the effects of surface tension we construct connected families of large amplitude periodic waves approaching a limiting wave, which is either a solitary wave, the highest solitary wave, the highest Stokes wave or a Stokes wave with a breaking profile. In particular, when the vorticity is nonnegative we prove the existence of highest Stokes waves with an included angle of 120<span>\\\\(^\\\\circ \\\\)</span>. In contrast to previous studies, we fix the Bernoulli constant and consider the wavelength as a bifurcation parameter, which guarantees that the limiting wave has a finite depth. In fact, this is the first rigorous proof of the existence of extreme Stokes waves with vorticity on water of finite depth. Aside from the existence of highest waves, we provide a new result about the regularity of Stokes waves of arbitrary amplitude (including extreme waves). Furthermore, we prove several new facts about steady waves, such as a lower bound for the wavelength of Stokes waves, while also eliminating a possibility of the wave breaking for waves with non-negative vorticity.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-023-01929-x.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-023-01929-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01929-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global Bifurcation and Highest Waves on Water of Finite Depth
We consider the two-dimensional problem for steady water waves with vorticity on water of finite depth. While neglecting the effects of surface tension we construct connected families of large amplitude periodic waves approaching a limiting wave, which is either a solitary wave, the highest solitary wave, the highest Stokes wave or a Stokes wave with a breaking profile. In particular, when the vorticity is nonnegative we prove the existence of highest Stokes waves with an included angle of 120\(^\circ \). In contrast to previous studies, we fix the Bernoulli constant and consider the wavelength as a bifurcation parameter, which guarantees that the limiting wave has a finite depth. In fact, this is the first rigorous proof of the existence of extreme Stokes waves with vorticity on water of finite depth. Aside from the existence of highest waves, we provide a new result about the regularity of Stokes waves of arbitrary amplitude (including extreme waves). Furthermore, we prove several new facts about steady waves, such as a lower bound for the wavelength of Stokes waves, while also eliminating a possibility of the wave breaking for waves with non-negative vorticity.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.