光电离技术在颗粒物有机分析中的发展与应用

IF 1.6 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Mengna Yuan, Junji Cao
{"title":"光电离技术在颗粒物有机分析中的发展与应用","authors":"Mengna Yuan,&nbsp;Junji Cao","doi":"10.1007/s41810-022-00130-z","DOIUrl":null,"url":null,"abstract":"<div><p>Photoionization (PI) is a soft ionization method that does not cause the production of molecular fragments from target materials. Applications of soft photoionization–mass spectrometric methods to molecular analysis are reviewed here. A non-selective photoionization technique (single-photon ionization, SPI) can be used to measure volatile compounds with molecular mass &lt; 120 m/z, while a soft and selective technique (resonance enhanced multi-photon ionization, REMPI) is better suited for aromatic compounds whose molecular mass is &gt; 100 m/z. The development of hyphenated thermal–optical analyzer photo-ionization time-of-flight mass spectrometers (PI-TOFMS) combined with REMPI and SPI methods has enabled the analyses of evolved gaseous species, and these advanced methods have led to new insights into the elemental and organic carbon in particulate matter. Nonetheless, technical developments in the REMPI/SPI–TOFMS framework are far from complete, and there are opportunities for the development of new process analysis applications.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Application of Photoionization Technology for Organic Analysis of Particulate Matter\",\"authors\":\"Mengna Yuan,&nbsp;Junji Cao\",\"doi\":\"10.1007/s41810-022-00130-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photoionization (PI) is a soft ionization method that does not cause the production of molecular fragments from target materials. Applications of soft photoionization–mass spectrometric methods to molecular analysis are reviewed here. A non-selective photoionization technique (single-photon ionization, SPI) can be used to measure volatile compounds with molecular mass &lt; 120 m/z, while a soft and selective technique (resonance enhanced multi-photon ionization, REMPI) is better suited for aromatic compounds whose molecular mass is &gt; 100 m/z. The development of hyphenated thermal–optical analyzer photo-ionization time-of-flight mass spectrometers (PI-TOFMS) combined with REMPI and SPI methods has enabled the analyses of evolved gaseous species, and these advanced methods have led to new insights into the elemental and organic carbon in particulate matter. Nonetheless, technical developments in the REMPI/SPI–TOFMS framework are far from complete, and there are opportunities for the development of new process analysis applications.</p></div>\",\"PeriodicalId\":36991,\"journal\":{\"name\":\"Aerosol Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41810-022-00130-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-022-00130-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光电离(PI)是一种软电离方法,不会导致目标材料产生分子碎片。综述了软光电离质谱法在分子分析中的应用。非选择性光电离技术(单光子电离,SPI)可用于测量具有分子质量的挥发性化合物 <; 120 m/z,而软而选择性的技术(共振增强多光子电离,REMPI)更适合于分子量为 >; 100 m/z。结合REMPI和SPI方法开发的热-光分析仪-光电离飞行时间质谱仪(PI-TOFMS)使人们能够分析进化的气体物种,这些先进的方法使人们对颗粒物中的元素和有机碳有了新的认识。尽管如此,REMPI/SPI-TOFMS框架中的技术开发还远未完成,而且有机会开发新的过程分析应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Application of Photoionization Technology for Organic Analysis of Particulate Matter

Photoionization (PI) is a soft ionization method that does not cause the production of molecular fragments from target materials. Applications of soft photoionization–mass spectrometric methods to molecular analysis are reviewed here. A non-selective photoionization technique (single-photon ionization, SPI) can be used to measure volatile compounds with molecular mass < 120 m/z, while a soft and selective technique (resonance enhanced multi-photon ionization, REMPI) is better suited for aromatic compounds whose molecular mass is > 100 m/z. The development of hyphenated thermal–optical analyzer photo-ionization time-of-flight mass spectrometers (PI-TOFMS) combined with REMPI and SPI methods has enabled the analyses of evolved gaseous species, and these advanced methods have led to new insights into the elemental and organic carbon in particulate matter. Nonetheless, technical developments in the REMPI/SPI–TOFMS framework are far from complete, and there are opportunities for the development of new process analysis applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol Science and Engineering
Aerosol Science and Engineering Environmental Science-Pollution
CiteScore
3.00
自引率
7.10%
发文量
42
期刊介绍: ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications.  ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信