具有各向异性壁滑移条件的Navier-Stokes方程

Pub Date : 2021-11-30 DOI:10.21136/AM.2021.0079-21
Christiaan Le Roux
{"title":"具有各向异性壁滑移条件的Navier-Stokes方程","authors":"Christiaan Le Roux","doi":"10.21136/AM.2021.0079-21","DOIUrl":null,"url":null,"abstract":"<div><p>This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction are sufficiently small compared to the viscosity and the surface friction.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Navier-Stokes equations with anisotropic wall slip conditions\",\"authors\":\"Christiaan Le Roux\",\"doi\":\"10.21136/AM.2021.0079-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction are sufficiently small compared to the viscosity and the surface friction.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2021.0079-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0079-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了有界域中具有方向相关Navier型滑移边界条件的Navier-Stokes方程边值问题的可解性。当流体在具有粗糙边界的域中的稳定流动被近似为在具有光滑边界的域内的流动时,就会出现这样的问题。用Galerkin方法证明,当物体力和表面摩擦力的变化性与粘性和表面摩擦力相比足够小时,边值问题具有唯一的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Navier-Stokes equations with anisotropic wall slip conditions

This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction are sufficiently small compared to the viscosity and the surface friction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信