分数阶微分方程的近似解

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
Yue Liu, Zhen Zhao, Yanni Zhang, Jing Pang
{"title":"分数阶微分方程的近似解","authors":"Yue Liu,&nbsp;Zhen Zhao,&nbsp;Yanni Zhang,&nbsp;Jing Pang","doi":"10.1007/s10483-023-3041-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the time-fractional coupled viscous Burgers’ equation (CVBE) and Drinfeld-Sokolov-Wilson equation (DSWE) are solved by the Sawi transform coupled homotopy perturbation method (HPM). The approximate series solutions to these two equations are obtained. Meanwhile, the absolute error between the approximate solution given in this paper and the exact solution given in the literature is analyzed. By comparison of the graphs of the function when the fractional order <i>α</i> takes different values, the properties of the equations are given as a conclusion.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 10","pages":"1791 - 1802"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3041-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximate solutions to fractional differential equations\",\"authors\":\"Yue Liu,&nbsp;Zhen Zhao,&nbsp;Yanni Zhang,&nbsp;Jing Pang\",\"doi\":\"10.1007/s10483-023-3041-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the time-fractional coupled viscous Burgers’ equation (CVBE) and Drinfeld-Sokolov-Wilson equation (DSWE) are solved by the Sawi transform coupled homotopy perturbation method (HPM). The approximate series solutions to these two equations are obtained. Meanwhile, the absolute error between the approximate solution given in this paper and the exact solution given in the literature is analyzed. By comparison of the graphs of the function when the fractional order <i>α</i> takes different values, the properties of the equations are given as a conclusion.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 10\",\"pages\":\"1791 - 1802\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10483-023-3041-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3041-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3041-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文用Sawi变换耦合的同位微扰方法求解了时间分数阶耦合粘性Burgers方程(CVBE)和Drinfeld-Sokolov-Wilson方程(DSWE)。得到了这两个方程的近似级数解。同时,分析了本文给出的近似解与文献给出的精确解之间的绝对误差。通过比较分数阶α取不同值时函数的图,得出了方程的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate solutions to fractional differential equations

In this paper, the time-fractional coupled viscous Burgers’ equation (CVBE) and Drinfeld-Sokolov-Wilson equation (DSWE) are solved by the Sawi transform coupled homotopy perturbation method (HPM). The approximate series solutions to these two equations are obtained. Meanwhile, the absolute error between the approximate solution given in this paper and the exact solution given in the literature is analyzed. By comparison of the graphs of the function when the fractional order α takes different values, the properties of the equations are given as a conclusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信